Closure of disjoint sets


I am trying to solve the following problem but I cannot figure out two disjoint sets such that their closures are equal.
Find languages S and T over the alphabet {a, b} such that $ S \not\subset T $ and $ T \not\subset\ S $ (S is not contained in T and T is not contained in S) but S* = T*. It might be trivial, but I would appreciate some help. Thanks.