I have a problem in which I am interested in taking a matrix of positive integer weights, including zero, where the matrix has dimensions nrow x ncol and the columns always sum to the same arbitrary number. I want to search for a list of paths (sets of edges essentially) that traverse through the grid space of the same dimension & create the paths such that the # of edges in a path going through a node is equal to the nodes weight (from the matrix). Ie: if a particular index in my matrix was "3", there would be 3 edges that would run into (and out of) this node.

Some important restrictions. Firstly, The only direction the edges can move is rightward (so vertical edges are disallowed) but only one column distance at a time. I do allow for the edges to go from any row_j (in column_i) to any other possible row_j in column_i+1, so diagonal edges (either upwards or downwards are allowed). Here’s an example of such a solution (it is non singular which is why Im interested in ALL possible paths)

Most importantly, I am interested in two things. First I want all possible paths from this process, and even more critically, I want to minimise the number of possible diagonal edges that my resulting paths will contain.

Any sort of algorithm here to solve this would be hugely helpful.

I have managed to solve the case when I don’t care about the number of diagonal edges, and just want a set of paths that match with the weights. To do that, I used the weights at adjacent columns to generate a Markov transition process. This gave me a series of transition matrices (of length ncol-1) which from there I was able to construct probabilistically what my paths through my weights were.

Let me know if anyone needs any more details/explanations here.