# Generate constraints that ensure positive definiteness

What is a good way to generate algebraic constraints that ensure matrix be positive definite? Ideally, I’d be able to do something like below

`Solve[# \[Element] Reals & /@ Eigenvalues[A]]`

However, this doesn’t directly work. Practical example below uses this to find the norm of a positive linear operator (related issue). It works, but requires `AposDefiniteConstraints` to be specified manually which I’d like to avoid.

(also tried `Thread[Eigenvalues[X] > 0]` suggestion from Find minimum with matrix positive-definiteness constraint but I get `Maximize` returning unevaluated)

``(* Find norm of a positive transformation of a positive definite \ d-by-d matrix *) SeedRandom; d = 2; symmetricMatrix[d_] := Array[a[Min[#1, #2], Max[#1, #2]] &, {d, d}]; extractVars[mat_] := DeleteDuplicates@Cases[Flatten@A, _a];  (* using built-in Norm/Simplify too slow, use this helper instead *)  norm[A_] :=    Max[x /. # & /@ Solve[CharacteristicPolynomial[A, x] == 0, x]];  A = symmetricMatrix[d]; Avars = extractVars[A];  B = Mean[#\[Transpose].A.# & /@     Table[RandomReal[{-1, 1}, {d,        d}], {d^2}]]; (* random positive transformation of A *) normA =   norm[A]; normB = norm[B]; AposDefiniteConstraints =    a[1, 1]^2 + 4 a[1, 2]^2 - 2 a[1, 1] a[2, 2] + a[2, 2]^2 >= 0 &&     a[1, 1]^2 + 4 a[1, 2]^2 - 2 a[1, 1] a[2, 2] + a[2, 2]^2 >= 0; Maximize[{normB, normA < 1,    AposDefiniteConstraints}, Avars] (* => {0.7853700810760375`,{a[1,1]\ \[Rule]0.999855037823971`,a[1,2]\[Rule]0.00017274783320670866`,a[2,2]\ \[Rule]0.9997941436806035`}} *)  $$```$$ ``