Given a sequence of integers $A_1,A_2,A_3 ……A_n$ , find number triples giving equal xor?

For giving sequence $ A_1,A_2,A_3 ……A_n$ , find number of triples $ i,j,k$ such that $ 1<=i<j<=k<=N$ and $ A_i + A_{i+1} + … A_{j-1} = A_{j} + A_{j+1} ….. A_{k}$ .Where $ +$ is bitwise xor operation .

I tried to solve it using dynamic programming somewhat similar to https://www.geeksforgeeks.org/count-number-of-subsets-having-a-particular-xor-value/ , but it’s time complexity if $ O(n*m)$ , where m is maximum element in the array .Can we do better than $ O(n*n)$ or $ O(n*m)$ ?