How can I correct this code to get an answer?


I need to calculate matrix m1 according to following algorithm. Then, I have to put it in the differential equation. However, matrix m1 is complex and therefore the differential equation does not work.
How can I correct this code to get an answer?

 m = {{0, WP[t], WP[t], WP[t], 0}, {WP[t], -FSR, 0, 0, -WS[t]}, {WP[t],  0, 0, 0, WS[t]}, {WP[t], 0, 0, FSR, -WS[t]}, {0, -WS[t],   WS[t], -WS[t], 0}};   q = Eigenvectors[m]; qq1 = Normalize[q[[1]]]; qq2 = Normalize[q[[2]]]; qq3 = Normalize[q[[3]]]; qq4 = Normalize[q[[4]]]; qq5 = Normalize[q[[5]]];   Ali1 = {{D[qq1, t][[1]], 0, 0, 0, 0}, {D[qq1, t][[2]], 0, 0, 0,    0}, {D[qq1, t][[3]], 0, 0, 0, 0}, {D[qq1, t][[4]], 0, 0, 0,    0}, {D[qq1, t][[5]], 0, 0, 0, 0}};  Vali1 = ConjugateTranspose[Ali1];  Kazi1 = Ali1.Vali1;   Ali2 = {{D[qq2, t][[1]], 0, 0, 0, 0}, {D[qq2, t][[2]], 0, 0, 0,    0}, {D[qq2, t][[3]], 0, 0, 0, 0}, {D[qq2, t][[4]], 0, 0, 0,    0}, {D[qq2, t][[5]], 0, 0, 0, 0}}; Vali2 = ConjugateTranspose[Ali2]; Kazi2 = Ali2.Vali2;  Ali3 = {{D[qq3, t][[1]], 0, 0, 0, 0}, {D[qq3, t][[2]], 0, 0, 0,  0}, {D[qq3, t][[3]], 0, 0, 0, 0}, {D[qq3, t][[4]], 0, 0, 0,  0}, {D[qq3, t][[5]], 0, 0, 0, 0}}; Vali3 = ConjugateTranspose[Ali3]; Kazi3 = Ali3.Vali3;  Ali4 = {{D[qq4, t][[1]], 0, 0, 0, 0}, {D[qq4, t][[2]], 0, 0, 0,  0}, {D[qq4, t][[3]], 0, 0, 0, 0}, {D[qq4, t][[4]], 0, 0, 0,  0}, {D[qq4, t][[5]], 0, 0, 0, 0}}; Vali4 = ConjugateTranspose[Ali4]; Kazi4 = Ali4.Vali4;   Ali5 = {{D[qq5, t][[1]], 0, 0, 0, 0}, {D[qq5, t][[2]], 0, 0, 0,   0}, {D[qq5, t][[3]], 0, 0, 0, 0}, {D[qq5, t][[4]], 0, 0, 0,    0}, {D[qq5, t][[5]], 0, 0, 0, 0}};  Vali5 = ConjugateTranspose[Ali5];  Kazi5 = Ali5.Vali5;   m1 = Kazi1 + Kazi2 + Kazi3 + Kazi4 + Kazi5;   sol1 = NDSolve[{D[c[t], t] == (m1).c[t],  c[0] == {1, 0, 0, 0, 0}}, c, {t, 0, 2 tf}];   ans = Evaluate[c[t] /. sol1[[1]]][[5]];  ans1 = Abs[ans]^2;  Plot[ans1, {t, 0, 2 tf}, Frame -> True]  

Hi friends, I need to calculate matrix m1 according to following algorithm. Then, I have to put it in the differential equation. However, matrix m1 is complex and therefore the differential equation does not work.
How can I correct this code to get an answer?