How to obtain the same result of the same system if I write the system in different ways (NDSolve)?

I did program where I solved a system when I organized in matrix form, this is the code

Clear["Global`*"]  SeedRandom[1234]  Nmax = 5; (*Number of sites*)  tini = 0; (*initial time*)  tmax = 200; (*maximal time*)  \[Sigma]2 = 0; (*Variance*)  n0 = 5; (*initial condition*)  ra = 1; (*coupling range*)  \[Psi]ini = Table[KroneckerDelta[n0 - i], {i, 1, Nmax}];  RR = RandomReal[{-Sqrt[3*\[Sigma]2], Sqrt[3*\[Sigma]2]}, Nmax];  Z = Table[     Sum[KroneckerDelta[i - j + k], {k, 1, ra}] +       Sum[KroneckerDelta[i - j - k], {k, 1, ra}], {i, 1, Nmax}, {j, 1,       Nmax}] + DiagonalMatrix[RR];  Clear[\[Psi]]  usol = NDSolveValue[{I D[\[Psi][t], t] ==      Z.\[Psi][t], \[Psi][0] == \[Psi]ini}, \[Psi], {t, tini, tmax}]  Plot[usol[t], {t, tini, tmax}] 

Now, I´m trying to solve the same system but writing the equations

Clear["Global`*"]  tini = 0;  tmax = 200;  usol = NDSolveValue[{I x1'[t] == x2[t], I x2'[t] == x1[t] + x3[t],      I x3'[t] == x2[t] + x4[t], I x4'[t] == x3[t] + x5[t],      I x5'[t] == x4[t], x1[0] == 0, x2[0] == 0, x3[0] == 0, x4[0] == 0,      x5[0] == 1}, {x1, x2, x3, x4, x5}, {t, tini, tmax}];  Plot[usol[t], {t, tini, tmax}] 

Why the second code doesn´t give me the same result if I write the same system?