How to set up a network camera

How to set up a network camera
Network cameras (a.k.a IP cameras) are gaining popularity rapidly among consumers due to their ever-improving quality, features and declining prices. An HD network camera that normally cost over $300 in 2012 can be bought under $60 in 2021. Traditional typical users of network cameras are enterprises that have professionals for installation and maintenance. Many consumers choose the DIY approach to set up their cameras. This article is meant to help these users. It by no means can replace the help from professionals that is needed for a variety of reasons – complexity of a video surveillance system, user lacking required basic computer/network knowledge, demanded expedition…
There are literally thousands of models of network cameras in use. It is impossible to have a set of instructions fitting every model perfectly. We use a popular model (M1034-W) by the network camera inventor – Axis – in this article. The setup steps for the vast majority of other network cameras are either identical or very similar to the ones described here.
A word about ONVIF?. Detailed explanation about ONVIF is beyond the scope of this article. An average user may only need to know that ONVIF is an international standard. An ONVIF conformant camera offers the maximum compatibility and interoperability with many software and hardware on the market. Generally speaking, ONVIF conformant cameras have more features and better quality than traditional non-ONVIF network cameras.
You can find numerous ONVIF conformant models on any popular online stores such as Amazon or eBay
For this article, we assume the reader has very basic computer and network knowledge. Technically savvy users may find many parts are too rudimentary for them.
Network configuration
Network cameras are different from web cams and analog CCTV cameras. Web cams are connected to computers by USB cables. Analogy CCTV cameras are connected to servers by coax cables. Network cameras are connected to a network for access just like computers are connected to networks. Each network camera is actually a computer with a CPU and memory. I process images from CCD (Charge-coupled Device) or CMOS (Complementary Metal-oxide Semiconductor) sensors, send to clients (e.g. apps) and hosts a web server.
Configure Apps
Most users want to access their network cameras outside their LANs (e.g. outside their homes). The next section will explain how to access the cameras via Wide Area Network (WAN) (e.g. via cellular connections). Unless you are experienced with the camera and its configuration, it is extremely important to make sure the camera works on your LAN first. This is because the WAN access will never work if the LAN access does not work. If it works on your LAN, it will be very easy to diagnose any issues with the WAN access.
Many apps have automated the setup process to a great degree, and it usually takes less than 1 minute to set up a camera before starting enjoying its video.
The following is for setting up a camera with apps Onvier for Android, and IP CENTCOM for Windows 8.1/10 and Windows Phone.
What is a Video Codec?
A small article about how the video codec work and why this software is very important for the modern media industry.
Background: the idea for this article was born out of a discussion with my friends about media software: how it works and why it’s important. After that, I understood that what’s really needed is a short, simple article about it. So here I’ve explained why we need codecs and given an overview of how they work.
What is the Internet of Things?In the broadest sense, the term IoT encompasses everything connected to the internet, but it is increasingly being used to define objects that “talk” to each other. “Simply, the Internet of Things is made up of devices – from simple sensors to smartphones and wearables – connected together,” Matthew Evans, the IoT programme head at techUK, says.By combining these connected devices with automated systems, it is possible to “gather information, analyse it and create an action” to help someone with a particular task, or learn from a process. In reality, this ranges from smart mirrors to beacons in shops and beyond.”It’s about networks, it’s about devices, and it’s about data,” Caroline Gorski, the head of IoT at Digital Catapult explains. IoT allows devices on closed private internet connections to communicate with others and “the Internet of Things brings those networks together. It gives the opportunity for devices to communicate not only within close silos but across different networking types and creates a much more connected world.”Why do connected devices need to share data?An argument has been raised that only because something can be connected to the internet doesn’t mean it should be, but each device collects data for a specific purpose that may be useful to a buyer and impact the wider economy.Within industrial applications, sensors on product lines can increase efficiency and cut down on waste. One study estimates 35 per cent of US manufacturers are using data from smart sensors within their set-ups already. US firm Concrete Sensors has created a device that can be inserted into concrete to provide data on the material’s condition, for instance.Subscribe to WIRED”IoT offers us opportunity to be more efficient in how we do things, saving us time, money and often emissions in the process,” Evans says. It allows companies, governments and public authorities to re-think how they deliver services and produce goods.
“The quality and scope of the data across the Internet of Things generates an opportunity for much more contextualised and responsive interactions with devices to create a potential for change,” continued Gorski. It “doesn’t stop at a screen”.
The latest Internet of Things news
Where does the IoT go next?
Even those who have purchased one of the myriad smart home products – from lightbulbs, switches, to motion sensors – will attest to the fact IoT is in its infancy. Products don’t always easily connect to each other and there are significant security issues that need to be addressed.
A report from Samsung says the need to secure every connected device by 2020 is “critical”. The firm’s Open Economy document says “there is a very clear danger that technology is running ahead of the game”. The firm said more than 7.3 billion devices will need to be made secure by their manufacturers before 2020.
“We are looking at a future in which companies will indulge in digital Darwinism, using IoT, AI and machine learning to rapidly evolve in a way we’ve never seen before,” Brian Solis, from Altimeter Group, who helped on the research said.
IoT botnets, created using a network of out-of-date devices took large websites and services offline in 2016. A Chinese firm later recalled 4.3 million unsecured connected cameras. The ease of bringing down the internet using IoT devices was revealed when instead of malicious purposes, the botnet was revealed to have been created to game Minecraft.
But aren’t there privacy implications?
Everything that’s connected to the internet can be hacked, IoT products are no exception to this unwritten rule. Insecure IoT system led to toy manufacturer VTech losing videos and pictures of children using its connected devices.
There’s also the issue of surveillance. If every product becomes connected then there’s the potential for unbridled observation of users. If a connected fridge tracks food usage and consumption, takeaways could be targeted at hungry people who have no food. If a smartwatch can detect when you’re having sex, what is to stop people with that data using it against the watches’ wearer.
“In the future, intelligence services might use the [internet of things] for identification, surveillance, monitoring, location tracking, and targeting for recruitment, or to gain access to networks or user credentials,” James Clapper, the US direction or national intelligence said in 2016. Wikileaks later claimed the CIA has been developing security exploits for a connected Samsung TV.

What is Battery-powered 4G Camera?
The 4G camera is the mobile monitoring cameras that use 4G LTE network to deliver live-view and send instant alerts. (Similarly, 2g/3g security cameras refer to the ones that work with 2g/3g network)
As the above definition indicates, 4G cellular CCTV cameras require a separate mobile service plan to work. And the cellular data consumption of 4G IP cameras varies, depending on how often you watch live streaming and receive motion detection alarms, etc.
Reolink Go is one of the best choice for the newly-emerged 4G surveillance cameras.