I’m plotting a 3d function and looking at it from above. here is the function definition:

`lagz[n_, m_, z_, zbar_] := 1/Sqrt[Pi*a^2*n!*m!]* E^(z*zbar/(2.*a^4)) * (a)^(m + n)* D[ E^(-(z*zbar)/a^4), {z, n}, {zbar, m}] /. {a -> 1} lagnlz[n_, l_, z_, zbar_] := Sqrt[n!/(Pi*a^2*(n + l)!)]* (z/a)^l LaguerreL[n, l, z*zbar/a^2]* E^(-z*zbar/(2.*a^2)) /. {a -> 1} lag[n_, l_, r_, \[Theta]_] := lagnlz[n, l, z, zbar] /. {z -> r*E^(I*\[Theta]), zbar -> r*E^(-I*\[Theta])} lagcc[n_, l_, r_, \[Theta]_] := lagnlz[n, l, z, zbar] /. {z -> r*E^(-I*\[Theta]), zbar -> r*E^(I*\[Theta])} `

And here is the code I’m using to plot:

`RevolutionPlot3D[ lag[1, 1, r, \[Theta]]*lagcc[1, 1, r, \[Theta]], {r, 0, 3}, {\[Theta], 0, 2 Pi}, ViewPoint -> Above] `

From the “Above” view, it is not at all clear (at least to me) that the height of the inner ring is larger than the height of the outer ring. Is there some setting or coloring I can use that will make the height difference much more apparent from this “Above” view?