MST with possibly minimal diameter


I am working with some research problem connected loosely to TSP which requires to find the Minimum Spanning Tree of a fully connected, weighted graph, where all the weights are positive and the graph is undirected (just like in Christofides algorithm). The point is, the problem I am working on requires me to find the MST with possibly lowest diameter (the number of nodes on the longest path between any two leaf nodes, equivalently, for the purpose of measuring the diameter one can treat all the edges of the MST as if they had the weight equal to 1).

I know that Boruvka’s, Prim’s and Kruskal’s algorithm can be used to find some MST, but can I influence them somehow to prefer the shortest (in the terms of the diameter) trees possible?

If the answer to the question above is negative, are there any algorithms or methods which either yield MST with some bounds on the tree diameter or, at least, are there any known methods of obtaining a bound on MST diameter for a given graph?