Proof of a greedy algorithm used for a variation of bin-packing problem


we are given an array of weights W (All the wights are positive integers) and we need to put the weights inside bins. Each bin can hold a maximum of Max_val (Wi <= Max_val (0 <= i < W.size())). The variation is that the ordering of weights should not be changed (ie; Wi should be inside a bin before Wj is inserted for all i < j).

For this problem statement, intuitively we can see that a greedy approach of filling a bin till its maximum value is reached and creating a new bin for further weights will produce the minimum number of bins. I am unable to come up with a formal proof that the greedy solution is optimal. Any hints or guidelines would be great!

PS: Wi represents ith element of W array.