I have a relatively simple expression here that is not simplifying:

$ $ \frac{2 s_0 \left(\sqrt{\gamma ^5 s_0}+\sqrt{\gamma ^9 s_0}\right)+\sqrt{\gamma ^3 s_0}+2 \sqrt{\gamma ^7 s_0}+\sqrt{\gamma ^{11} s_0}+\sqrt{\gamma ^7 s_0^5}}{\gamma \left(\gamma ^2+\gamma s_0+1\right){}^2} $ $

`$ Assumptions = {(s0 | \[Gamma]) \[Element] Reals, \[Gamma] > 0, s0 > 0}; (Sqrt[s0 \[Gamma]^3] + 2 Sqrt[s0 \[Gamma]^7] + Sqrt[s0^5 \[Gamma]^7] + Sqrt[s0 \[Gamma]^11] + 2 s0 (Sqrt[s0 \[Gamma]^5] + Sqrt[s0 \[Gamma]^9]))/(\[Gamma] (1 + s0 \[Gamma] + \[Gamma]^2)^2) // Simplify (Sqrt[s0 \[Gamma]^3] + 2 Sqrt[s0 \[Gamma]^7] + Sqrt[s0^5 \[Gamma]^7] + Sqrt[s0 \[Gamma]^11] + 2 s0 (Sqrt[s0 \[Gamma]^5] + Sqrt[s0 \[Gamma]^9]))/(\[Gamma] (1 + s0 \[Gamma] + \[Gamma]^2)^2) == Sqrt[s0 \[Gamma]] // Simplify `

The output is:

`(Sqrt[s0 \[Gamma]^3] + 2 Sqrt[s0 \[Gamma]^7] + Sqrt[ s0^5 \[Gamma]^7] + Sqrt[s0 \[Gamma]^11] + 2 s0 (Sqrt[s0 \[Gamma]^5] + Sqrt[s0 \[Gamma]^9]))/(\[Gamma] (1 + s0 \[Gamma] + \[Gamma]^2)^2) True `

Why is Mathematica not simplifying to this much simpler form $ \sqrt{s_0 \gamma}$ , I think my assumptions should be enough. I can do the simplification by hand