How can I import CSS-weighted font faces such as DemiBold, UltraBold, etc. into Draw.io?

I’m able to import fonts from my computer locally by simply installing the font, and then typing the full name of the font, such as “ITCKabelStd” and it works well, but whenever I try to do “ITCKabelStd-Ultra” or anything with a CSS weight of boldness font face, it doesn’t detect it. It just uses the regular front “ITCKabelStd” in place of it when I put the ultra variant. I’ve checked my computer to make sure those font faces are installed, and they are indeed installed. How can I fix this issue?

Open Challenge. Express some binary Set using the minimum number of faces

Set example:

000 001 101 111 

It contains the same elements that the two faces:

00X 1X1 

Being the expansion of each face:

00X give  000,001 1X1 give  101,111 

That is. Without X expands to 1; One X expands 2; two X expand 4…

The challenge consists of expressing, by the minimum of faces, elements type “10X00X11”, the following set of 168 words of 16 bits length.

**************** 0000000000000000  1000000000000000  1100000000000000  1010000000000000  1110000000000000  1111000000000000  1000100000000000  1100100000000000  1010100000000000  1110100000000000  1111100000000000  1100110000000000  1110110000000000  1111110000000000  1010101000000000  1110101000000000  1111101000000000  1110111000000000  1111111000000000  1111111100000000  1000000010000000  1100000010000000  1010000010000000  1110000010000000  1111000010000000  1000100010000000  1100100010000000  1010100010000000  1110100010000000  1111100010000000  1100110010000000  1110110010000000  1111110010000000  1010101010000000  1110101010000000  1111101010000000  1110111010000000  1111111010000000  1111111110000000  1100000011000000  1110000011000000  1111000011000000  1100100011000000  1110100011000000  1111100011000000  1100110011000000  1110110011000000  1111110011000000  1110101011000000  1111101011000000  1110111011000000  1111111011000000  1111111111000000  1010000010100000  1110000010100000  1111000010100000  1010100010100000  1110100010100000  1111100010100000  1110110010100000  1111110010100000  1010101010100000  1110101010100000  1111101010100000  1110111010100000  1111111010100000  1111111110100000  1110000011100000  1111000011100000  1110100011100000  1111100011100000  1110110011100000  1111110011100000  1110101011100000  1111101011100000  1110111011100000  1111111011100000  1111111111100000  1111000011110000  1111100011110000  1111110011110000  1111101011110000  1111111011110000  1111111111110000  1000100010001000  1100100010001000  1010100010001000  1110100010001000  1111100010001000  1100110010001000  1110110010001000  1111110010001000  1010101010001000  1110101010001000  1111101010001000  1110111010001000  1111111010001000  1111111110001000  1100100011001000  1110100011001000  1111100011001000  1100110011001000  1110110011001000  1111110011001000  1110101011001000  1111101011001000  1110111011001000  1111111011001000  1111111111001000  1010100010101000  1110100010101000  1111100010101000  1110110010101000  1111110010101000  1010101010101000  1110101010101000  1111101010101000  1110111010101000  1111111010101000  1111111110101000  1110100011101000  1111100011101000  1110110011101000  1111110011101000  1110101011101000  1111101011101000  1110111011101000  1111111011101000  1111111111101000  1111100011111000  1111110011111000  1111101011111000  1111111011111000  1111111111111000  1100110011001100  1110110011001100  1111110011001100  1110111011001100  1111111011001100  1111111111001100  1110110011101100  1111110011101100  1110111011101100  1111111011101100  1111111111101100  1111110011111100  1111111011111100  1111111111111100  1010101010101010  1110101010101010  1111101010101010  1110111010101010  1111111010101010  1111111110101010  1110101011101010  1111101011101010  1110111011101010  1111111011101010  1111111111101010  1111101011111010  1111111011111010  1111111111111010  1110111011101110  1111111011101110  1111111111101110  1111111011111110  1111111111111110  1111111111111111  **************** 

A first minimum value: 168. Something better?

Linear relations between volume of a polytope and its faces

Let $ P$ be a polytope. Is anything known about the set of linear relations that hold between the volumes of the (not-necessarily proper) faces of $ P$ as $ P$ “varies slightly”? By varies slightly I mean without changing the face lattice—so, it makes sense for a linear functional to vanish at each vector $ (vol(F))_{F \text{ a face of }P’}$ for $ P’$ “close” to $ P$ .