## (JAVA) Bigger number than allowed as “int”. No error message

I´ve written the following code to test the limits of an int variable:

package com.company;

public class Main {

public static void main(String[] args) {      //minimun int value     int minValue = -2_147_483_648;       //2 times minimum int value     int doubleMinValue = 2*minValue;      //print both     System.out.println(minValue);     System.out.println((2*minValue));  } 

}

And I got the following result:

-2147483648

0

Process finished with exit code 0

I was expecting to receive a ERROR MESSAGE, but I received a WRONG ANSWER. What is the Java logic in this case ?

Thanks.

## Компилятор выдаёт ошибку expected unqualified-id before ‘{‘ token и error: expected initializer before ‘int’

В программе выдает ошибку.Необходимо написать алгоритм нахождения индексов элемента заданного в матрице.

## What does “unsupported operand type(s) for -: ‘int’ and ‘tuple’” means?

i got a error saing: unsupported operand type(s) for +=: ‘int’ and ‘tuple’

    def accounting(self):         [total], = self.db.c.execute('''SELECT NeedInvestment FROM building WHERE id == 5''')          investment = []         for i in self.db.c.execute('''SELECT AmountOfInvestment FROM investor '''):             investment.append(i)          totaltemp = 0          while totaltemp <= total:             i = random.randint(0, 5)             totaltemp += investment[1] 

How do i correct it?

## Can you help me find the residues of $\int _{0}^{2\pi}\frac{cos3\theta} {5-4cos \theta}d\theta = \frac{\pi}{12}$

The intergrand has a pole of order 3 at z=0 and a simple pole z=1/2 inside C but I don’t know how to find their residues. Can somebody help me pls?

More details: convert from polar to z ∫2π0cos3θ/5−4cosθdθ=−1/2i∮Cz6+1(z3)(2z−1)(z−2)dz

## Differentiability of $\int \log F$ when $\int \log f$ is differentiable?

For a specific probability density function $$f$$, which is not differentiable everywhere, I have proven that the Hessian of $$g(\theta) = \int \log f(x;\theta)d H(x),$$ exists for all $$\theta \in {\mathbb R}^p$$, where $$H$$ is another distribution function. Let $$F(x;\theta) = \int_{-\infty}^x f(t;\theta)dt$$ be the distribution function. I want to check if the Hessian of $$G(\theta) = \int \log F(x;\theta)dH(x),$$ also exists.

Is there a direct method of showing this? This is, some general result I can appeal to? If it wasn’t for the logarithm, I could use exchange the integral and derivative symbols, for instance.

## Evaluate $\int \frac{3}{x}-\frac{2}{x^2}+1+3xdx$?

I need to evaluate $$\int \frac{3}{x}-\frac{2}{x^2}+1+3xdx$$. I have done these steps.

$$\int \frac{3}{x}-\frac{2}{x^2}+1+3xdx$$

$$=1\int \frac{1}{x}dx-2\int x^{-2}dx+ \int1 dx+3 \int xdx$$

$$= 3\ln |x|-\frac{2}{x}+x+ \frac{3x^2}{2}+C$$

But this is apparently wrong.

## TypeError: ‘int’ object is not callable

El problema que tengo es que no ubico donde esta el error, me aparece lo siguiente para identificar donde esta el error pero no le entiendo:

Traceback (most recent call last):   File "<stdin>", line 1, in <module> TypeError: 'int' object is not callable 

# Codigo parcial de programa

import sys from PyQt5.QtWidgets import QApplication, QDialog from PyQt5 import uic   class MiFormulario(QDialog):      def __init__(self):         QDialog.__init__(self)         uic.loadUi("Problema1Raptor.ui", self)         self.Pbttn_Calcular.clicked.connect(self.calcular)      def calcular(self):          numero = int(self.ui.lineEdit_num.text())          while numero < 0:              self.ui.label_advertencia.setText("Introduzca un valor mayor a cero")             numero = int(self.ui.lineEdit_num.text())              if numero > 0:                 self.ui.label_advertencia.setText("") 

## Defining a class that behaves exactly like an int

Am I missing anything?
Is there anything I could improve on?

Are there any tricks that I could learn from this?
How about style; does the style look OK?

#include <iostream> // std::cout #include <utility>  // std::move  class jd_int { public:     jd_int() = default;      jd_int(int i)             : _i{i}                   { }     jd_int(const jd_int& jdi) : _i{jdi._i}              { }     jd_int(jd_int&& jdi)      : _i{std::move(jdi._i)}   { }      jd_int operator= (int i)             { _i = i; return *this;                 }     jd_int operator= (double d)          { _i = d; return *this;                 }     jd_int operator= (const jd_int& jdi) { _i = jdi._i; return *this;            }     jd_int operator= (jd_int&& jdi)      { _i = std::move(jdi._i); return *this; }      ~jd_int() = default;      operator bool()   { return !!_i;                    }     operator int()    { return static_cast<int>(_i);    }     operator double() { return static_cast<double>(_i); }      jd_int operator+=(jd_int jdi) { return _i += jdi._i; }     jd_int operator+ (jd_int jdi) { return _i +  jdi._i; }      jd_int operator-=(jd_int jdi) { return _i -= jdi._i; }     jd_int operator- (jd_int jdi) { return _i -  jdi._i; }      jd_int operator*=(jd_int jdi) { return _i *= jdi._i; }     jd_int operator* (jd_int jdi) { return _i *  jdi._i; }      jd_int operator/=(jd_int jdi) { return _i /= jdi._i; }     jd_int operator/ (jd_int jdi) { return _i /  jdi._i; }      jd_int operator%=(jd_int jdi) { return _i %= jdi._i; }     jd_int operator% (jd_int jdi) { return _i %  jdi._i; }      jd_int operator++()    { return ++_i;                          }     jd_int operator++(int) { jd_int tmp = *this; ++_i; return tmp; }      jd_int operator--()    { return --_i;                          }     jd_int operator--(int) { jd_int tmp = *this; --_i; return tmp; }      friend bool operator< (jd_int lhs, jd_int rhs);     friend bool operator> (jd_int lhs, jd_int rhs);     friend bool operator<=(jd_int lhs, jd_int rhs);     friend bool operator>=(jd_int lhs, jd_int rhs);     friend bool operator==(jd_int lhs, jd_int rhs);     friend bool operator!=(jd_int lhs, jd_int rhs);  private:     int _i;      friend std::ostream& operator<<(std::ostream& os, const jd_int jdi);     friend std::istream& operator>>(std::istream& is, jd_int jdi); };  bool operator< (jd_int lhs, jd_int rhs) { return (lhs._i <  rhs._i); } bool operator> (jd_int lhs, jd_int rhs) { return (lhs._i >  rhs._i); } bool operator<=(jd_int lhs, jd_int rhs) { return (lhs._i <= rhs._i); } bool operator>=(jd_int lhs, jd_int rhs) { return (lhs._i >= rhs._i); } bool operator==(jd_int lhs, jd_int rhs) { return (lhs._i == rhs._i); } bool operator!=(jd_int lhs, jd_int rhs) { return (lhs._i != rhs._i); }  std::ostream& operator<<(std::ostream& os, const jd_int jdi) {     os << jdi._i;     return os; }  std::istream& operator>>(std::istream& is, jd_int jdi) {     is >> jdi._i;     return is; } $$$$ `

## How do you evaluate this integral $\int \frac{6x^{3}+7x^2-12x+1}{\sqrt{x^2+4x+6}}dx$

$$\int \frac{6x^{3}+7x^2-12x+1}{\sqrt{x^2+4x+6}}dx$$

I have met this complex integral today, how do you evaluate this? Can you do this in more steps?

## $f,g \in [0,1] \times [0,1]$, $\int f – g \mathrm{d}x = 0$ and are monotonically increasing, then $\int |f-g| \mathrm{d}x \le \frac{1}{2}$

$$f,g$$ are monotonically increasing in $$[0,1]$$ and $$0\le f , g \le 1$$. $$\int_0^1 f – g \mathrm{d}x = 0$$. Prove that

$$\int_0^1 |f – g|\mathrm{d}x \le \frac{1}{2}$$

In my previous question, $$g(x) = x$$. And my teacher said $$x$$ can be replaced by $$g(x)$$. In fact, in previous question, we don’t need to use the condition $$\int_0^1 f – g \mathrm{d}x = 0$$. But if we replace $$x$$ with $$g$$, this condition becomes necessary.

Also, if $$g = x$$, we can replace the $$\frac{1}{2}$$ with $$\frac{1}{4}$$,that is

$$\int_0^1|f-g| \mathrm{d}x \le \frac{1}{4}$$ I am wondering how to prove that.