Lozenge tilings

I am trying to produce these lozenge tilings as a way of encoding plane partitions. I need to produce something like:

but am using demonstration code like this:

``coversQ[parent_, child_] :=   And[Length[parent] >= Length[child],    Min[Take[parent, Length@child] - child] >= 0]  planepartitionQ[par_] :=   MatchQ[par, {{___Integer} ..}] &&    If[Length[par] > 1,     And @@ MapThread[coversQ, {Drop[par, -1], Rest[par]}], True]  PlanePartitions[n_Integer] := Module[{l1, l2, l3, l4, z, w},   l1 = z @@@ IntegerPartitions[n];   l2 = l1 /. k_Integer /; (k > 1) :> w @@ IntegerPartitions[k];   l3 = l2 /. z[x_w, y : (1 ...)] :> Thread[z[x, y], w] /.              z[x__w] :> Outer[z, x] /.       z[x__w, y : (1 ...)] :>        Outer[z, x, Sequence @@ ({y} /. 1 -> w[1])] /. w -> Sequence;   l4 = l3 /.       z[x___List, y : (1 ..)] :> z[x, Sequence @@ Transpose[{{y}}]] /.      z -> List; Cases[Union[l4], _?planepartitionQ]   ] PlanePartitionDiagram[l_List] := Module[{i, j, k},   Graphics3D[    Table[Cuboid[{j, -i, k}],     {i, Length[l]},     {j, Length[l[[i]]]},     {k, l[[i, j]]}     ]    ]   ] Show[PlanePartitionDiagram[{{3, 3, 2, 1}, {0, 3, 2, 1}, {0, 3, 2, 1},     {0, 0, 0, 1}}]] ``

producing the slightly less pleasing:

Is there a way to produce figures like this lozenge tiling in Mathematica?