Where can i find Oil and Gas well locations and data to import into google maps api?

Can someone help me find out where websites like http://www.drillingedge.com/ and other sites are getting there data from? I’m looking for longitude and latitude of every well and well information.

For example where can i find data like this?

http://www.drillingedge.com/north-dakota/williams-county/wells/anderson-5x-4h/33-105-04709

It has to be on the states website right https://www.dmr.nd.gov/oilgas/ but on well search they do not list the well coordinates only township numbers so i can’t get the exact location of the wells.

On the states website there is subscription service which i think has all the data that comes in excel format but in the terms of service (i put below) it says from what i understand that you can’t charge a subscription service with this data. Is this correct if so, where are these other websites getting there oil and gas well data from?

https://www.dmr.nd.gov/oilgas/subscriptionservice.asp

“Excessive mining of data during normal business hours, any automated data mining activities that adversely affect normal server functions at any time, or any business practices that substantially duplicate OGD subscription services without adequately defraying the costs of providing such data under NDCC 38-08-04.6 may result in suspension of user access to our web site.”

Google Maps. Cómo cargar dinámicamente el cálculo de ruta del mapa

Necesito ayuda con el cálculo de la ruta de Google Maps al cargarla en forma dinámica. Aparece el error en la consola de que la función del cálculo (calcularRuta()) no está definida:

Uncaught ReferenceError: calcularRuta is not defined     at HTMLInputElement.onclick (index.html:1) 

Todo lo demás funciona perfectamente, pero al llamar a la función nombrada aparece ese error. He probado a cargarla de distintos modos y a situarla en otro lugar del código pero no funciona. Os de el script del mapa aquí:

var gMapsLoaded = false; window.gMapsCallback = function() {   gMapsLoaded = true;   $  (window).trigger('gMapsLoaded'); }  window.loadGoogleMaps = function() {   if (gMapsLoaded) return window.gMapsCallback();   var script_tag = document.createElement('script');   script_tag.setAttribute("type", "text/javascript");   script_tag.setAttribute("src", "https://maps.googleapis.com/maps/api/js?key=AIzaSyBDaeWicvigtP9xPv919E-RNoxfvC-Hqik&callback=gMapsCallback");   (document.getElementsByTagName("head")[0] || document.documentElement).appendChild(script_tag); }  $  (document).ready(function() {       var mapa;       var mostrar_direcciones;        var servicios_rutas;        function initialize() {         servicios_rutas = new google.maps.DirectionsService();         mostrar_direcciones = new google.maps.DirectionsRenderer();         var milatlng = new google.maps.LatLng(40.4450489, -3.6103049)         var mapOptions = {           zoom: 12,           center: milatlng,           mapTypeId: google.maps.MapTypeId.ROADMAP          };         map = new google.maps.Map(document.getElementById('mapa'), mapOptions);          mostrar_direcciones.setMap(mapa);         mostrar_direcciones.setPanel(document.getElementById("ruta"));          var marker = new google.maps.Marker({           position: milatlng,           map: map,         });        }        function calcularRuta() {         var partida = document.getElementById("partida").value;         var destino = document.getElementById("destino").value;         var opciones = {           origin: partida,           destination: destino,           travelMode: google.maps.DirectionsTravelMode.DRIVING           //indicamos en este caso que hacemos el viaje en coche/moto         };          servicios_rutas.route(opciones, function(response, status) {           if (status == google.maps.DirectionsStatus.OK) {             mostrar_direcciones.setDirections(response);           }         });       }        $  (window).bind('gMapsLoaded', initialize);       window.loadGoogleMaps(); 

Y el HTML aquí:

<div id="contenedorMapa">     <h2>ENCUÉNTRAME AQUÍ</h2>     <div id="mapa">          <p>Cargando, espere por favor...</p>      </div>     <div id="ruta" style="width: 100px; height: 100px; background-color: green;"></div>     <input type="text" id="partida" name="partida">     <input type="destino" id="destino" name="destino">     <input type="button" name="button" id="button" value="aaaaaaaaaaa" onclick="calcularRuta()"> </div> 

Supongo que es cuestión de mover algún dato pero he hecho varias pruebas y no doy con el error.

Gracias!

Yandex Maps API: SearchControl с boundedBy отображает пустую выдачу

Существует задача: показывать пользователю его дом по введённому адресу. Мы точно знаем, что он ищет свой дом в пределах определённого города, допустим Иркутска.
Алгоритм действий:

  1. Берём улицу и дом из полей, в которые пользователь ввёл данные
  2. Вставляем адрес в SearchControl и осуществляем поиск в пределах города (пределы определены через геокодер)
  3. Выбираем первый вариант поисковой выдачи в надежде что это действительно он.
    map.controls.get("searchControl")         .search(`$  {street}, $  {house}`, { boundedBy, strictBounds: true })         .then(() => {             if (searchControl.getResultsArray().length) {                 searchControl.showResult(0);             }         }); 

При совершении этих операций возникает ошибка поиска – он ничего не находит, хотя если вручную ввести в это поле адрес, то он будет найден.
Полагаю, что реализацию этого функционала нужно делать именно через показ пользователю строку поиска и её заполнением,потому что вариант с поиском координат через геокодер может не отработать, а пользователь в этом случае сам исправит адрес в строке поиска.
Ссылка на codepen с демонстрацией бага
Каким образом избавиться от этого бага сделав так, чтобы поиск находил адрес и отображал его, будто бы пользователь сам ввёл и выбрал первый вариант?

Maps app with pins [on hold]

So I’m not sure if this is the aright location for this question, if not please point me in the right direction and I’ll delete it here. I’ve been thinking of making a map app for a while where you can post animal sightings and get some education animal facts. I’ve figured I would find a good starting point with some similar apps on Github that would be similar to waze but can’t seem to find any. That being said, where should I even start? Where can I find a decent maps app code without starting from scratch? Thanks in advance.

Google Maps always turns screen on

I’ve been using mobile Google Maps on a variety of Motorola Moto phones so far in two “modes”:

  • actual driving suggestions (screen turned on),
  • sharing location and route with other people (screen turned off).

As said above, in second scenario I always:

  • turn mobile Google Maps,
  • pick destination address and calculate route,
  • selecte people to share these data with,
  • hit Power button to turn screen off.

The above worked just find with any Motorola Moto device. I have now switched to TP-LINK’s Neffos X9 and I can clearly see that this doesn’t work — screen stays turned off only unti next driving suggestion, i.e. next turn. Then it turns itself on.

All my previous phones (a variety of Motorola Motos) uses Android 8.0, Neffos X9 — Android 8.1.

So the question is, if the issue with Google Maps not staying with the screen turned off all the time during navigation is the problem of Android 8.1 or Android’s implementation in Neffos X9.

And — of course — is there anything I can do with this and have Google Maps navigation with screen turned off through all track under Neffos X9?

Google Maps’ shortcuts needs to be used twice in order to work

I’ve been using Google Maps app’s shortcut for 2-3 years so far:

enter image description here

For past 2-3 weeks (since latest Google Maps’ update?) it turned out that I have to use it twice, i.e.:

  • long-press Google Maps icon to reveal its app’s shortcuts,
  • tap on any,
  • wait until Google Maps starts up,
  • hit Home button to exit Google Maps,
  • long-press GM’s icon again,
  • use app’s shortcut again.

If I do this the regular way (i.e. only once) I end up with Google Maps opening in navigation mode, but with “Destination” field empty and asking me where to I want to go.

Only, if I use app’s shortcut for the second time, I get the usual results — i.e. Google Maps starting in navigation mode, with destination set and with route calculated, ready to navigate me.

Is this some kind of bug in Google Maps? Is there a workaround for this?

A wrongly ‘I need help’ text was sent from google maps

I left my phone where I work and I needed a #. I asked a coworker to gain access. An ‘I need help’ text alert was sent to one of my groups and I recieved the same message from one of them. It was sent 20 minutes before it was discovered. Upon frantically calling to find out what kind of help was needed, I found that it was bogus. It was unnerving, to say the least. Aside from shutting it off, what can be done to correct this?

Use of Asymptotics in Diffusion Maps

This is a question about the use of asymptotics in the following paper:

Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied and computational harmonic analysis, 21(1), 5-30.

Question for brevity: Suppose

$ $ f(x) = f_1(x) + \mathcal{O}(x^k) $ $

where $ f_1$ has order $ x^{-\delta}$ for small $ \delta$ . Is it possible to “take” a small term from $ \mathcal{O}(x^k)$ and combine it with the leading term and obtain a term of constant order?

Details:

Let $ M\subseteq \mathbb{R^n}$ be an isometrically embedded compact submanifold (we will assume no boundary.) Let $ K:\mathbb{R}\rightarrow \mathbb{R}$ be a real-valued function which is bounded above by $ \alpha e^{-\beta x}$ for some positive real numbers $ \alpha, \beta$ (i.e. $ K$ has exponential decay.)

The main results of the paper involve an asymptotic expansion of the kernel integral operator (I have made some slight changes for clarity.) $ $ \mathcal{G}f(p) = \frac{1}{\varepsilon}\int_M K\left(\frac{d(p,x)^2}{\varepsilon^2}\right)f(x) dV $ $

where $ dV$ denotes the natural volume density on $ M$ , $ d(p,x)$ is the geodesic distance in $ M$ from $ p$ to $ x$ , and $ \varepsilon$ is a small parameter where $ \varepsilon^\gamma$ is less than the injectivity radius of $ M$ for some $ 0<\gamma<1$ .

The idea of the proof is to localize the integral operator about a geodesic ball of radius $ \varepsilon^\gamma$ , then show that outside this geodesic ball is asymptotically bounded above by any polynomial. That is: $ $ \mathcal{G}f(p) = \frac{1}{\varepsilon}\int_{B_{\varepsilon^\gamma}(p)} K\left(\frac{d(p,x)^2}{\varepsilon^2}\right)f(x) dV +\mathcal{O}(\varepsilon^k). $ $

They then proceed to take a messy expansion of the localized integral inside polar normal coordinates $ (\theta^1,…,\theta^{d-1},t)$ centered at $ p$ . The first-order term is:

$ $ \frac{1}{\varepsilon}\int_{\theta\in S^{d-1}} \int_{t=0}^{t=\varepsilon^\gamma}K\left(\frac{\Vert t\Vert_{g}^2}{\varepsilon^2}\right) dV. $ $

A quick Taylor expansion of the inside indicates to me that this expression should be of order $ \mathcal{O}(\varepsilon^{\gamma-1})$ . However, in the paper they use the following trick:

Add and subtract the term $ $ \frac{1}{\varepsilon}\int_{\theta\in S^{d-1}} \int_{t=\varepsilon^\gamma}^{t=\infty}K\left(\frac{\Vert t\Vert_{g}^2}{\varepsilon^2}\right) d\theta dt. $ $ Which has order $ \mathcal{O}(\varepsilon^k)$ for arbitrarily high $ k$ . Throw the subtracted term away into the $ \mathcal{O}(\varepsilon^k)$ and combine the added term with the integral above to obtain: $ $ \frac{1}{\varepsilon}\int_{\theta\in S^{d-1}} \int_{t=0}^{t=\infty}K\left(\frac{\Vert t\Vert^2}{\varepsilon^2}\right) d\theta dt. $ $

Then, making a substitution $ t \mapsto \varepsilon t$ , the integral becomes

$ $ \int_{\theta\in S^{d-1}} \int_{t=0}^{t=\infty} K(\Vert t\Vert^2)d\theta dt. $ $

which has order $ \mathcal{O}(1)$ .

In effect they have changed the order of the leading term from $ \mathcal{O}(\varepsilon^{\gamma-1})$ to $ \mathcal{O}(1)$ . Is this possible in general? Is there a good reference on asymptotics where this phenomenon (or others like it) is explained rigorously?