$ f \in L^p$ for $ 1\le p < \infty$ . The measure space is $ (\Omega, \mathcal{A}, \mu)$ .
How can I show that
$ $ \mu\Big(\{x \in \Omega:|f(x)|>c||f||_p\}\Big) \le \frac{1}{c^p} \ \forall c>0$ $
100% Private Proxies – Fast, Anonymous, Quality, Unlimited USA Private Proxy!
Get your private proxies now!
$ f \in L^p$ for $ 1\le p < \infty$ . The measure space is $ (\Omega, \mathcal{A}, \mu)$ .
How can I show that
$ $ \mu\Big(\{x \in \Omega:|f(x)|>c||f||_p\}\Big) \le \frac{1}{c^p} \ \forall c>0$ $