Requiring hardware key at boot-up on normal laptop

I am sure that a question like this already exists and has probably been answered. I just couldn’t find any results (probably due to my inability to word my question correctly).

We use laptops at work which require a hardware key (a USB) to boot the computer along with a username/password. It then boots to Windows and a different USB/Username/Password combination is required.

I am already aware on how to implement the second security feature (the windows login requiring USB as well) but can’t find any information on implementing a USB requirement to pass through the boot-up process. It’s very similar to having a BIOS password, though requires a USB/Username/Password combination and therefore more secure as requiring a physical token.

I am trying to implement this to provide higher than usual BIOS level security. I don’t want the machine to be able to be used WITHOUT the physical access token and am not concerned with HDD security (i.e, the OS itself) as I have already implemented significant security onto that already.

i.e if somebody connects an external HDD and tries to boot onto that instead of the build in HDD (which has OS-level security), I want them to require a physical token to do so along with a username and password

The startup process should therefore go like this:

    1. Power on     2. Insert USB (this is my issue)     3. Enter Username/Password     4. Boot to Windows     5. Insert seperate USB     6. Enter Windows username/password     7. Login 

Normal colorings of cubic graphs (part 1)


Definition A normal $ k$ -coloring of a cubic graph (3-regular graph) is a proper coloring of the edges with $ k$ colors such that each edge an its adjacent edges are colored with either five colors, or with three.

There is also the following

Conjecture Every bridgeless cubic graph (that is, a cubic graph without a cut edge) can be normally 5-colored.

We are looking for algorithms to normally color cubic graphs

Questions

  1. Could you suggest an algorithm to find normal $ k$ -colorings of cubic graphs that is efficient and simple. It is known that 9 colors should suffice. It is my understanding that it is possible to do this with a linear time algorithm, although the publication of this algorithm is unknown to me.

  2. Could you suggest an algorithm to find normal 5-colorings of cubic graphs if they exist?

If there is a better site where this question could be posted, please indicate this. If this site is not for questions requesting information about algorithms, please notify and it will be removed immediately. I have never posted in this site.

Is it normal for a company to ask me for a picture of my ID for proof of identity?

I bought a game off a third party website and they declined my card and said to send a picture of the cardholders ID to prove that the debt card is mine. i don’t feel safe sending a picture of my ID to this website. They charged my card and i didn’t receive my game so i don’t know what to do. the website is https://www.instant-gaming.com/en/

Would the spell Purify Food and Drink remove physical hazards like bone shards from otherwise normal food?

In a session of the Hoard of the Dragon Queen adventure, our characters were sitting down to a campsite meal provided by the chuck wagon. Being aware that they were being hunted/stalked, the cleric of the party (a dwarf for what it’s worth) cast Purify Food and Drink on their meal. They were getting ready to chow down when an NPC approached and advised them not to eat. This NPC then proceeded to fish or filter (I can’t recall which now) several sharp bone that would have (we were informed) been quite deleterious to our health.

The DM ruled that since bone is not poisonous, it would not be affected by the spell. I say that, RAW, by the very definition of “purify”, any harmful substance would be removed.

I researched the site and found a similar sort of question in: How great is the purifying power of Purify Food and Drink?, but it didn’t precisely speak to the question at hand. Our DM requested that I post the question here seeking disinterested third-party opinions.

The description of the Purify Food and Drink spell says:

All nonmagical food and drink within a 5-foot-radius sphere centered on a point of your choice within range is purified and rendered free of poison and disease.

From the definition of “purified” on OxfordDictionaries.com:

  1. having had contaminants removed; cleansed.

The definition of “purify” on Dictionary.com:

  1. to make pure; free from anything that debases, pollutes, adulterates, or contaminates: to purify metals.
  2. to free from foreign, extraneous, or objectionable elements

The Merriam-Webster definition of purify:

: to make pure: such as

a : to clear from material defilement or imperfection

And of “pure”:

1 a (1) : unmixed with any other matter
(2) : free from dust, dirt, or taint

“Purify” in the Cambridge English Dictionary:

(NOT MIXED) ​ to remove bad substances from something to make it pure:

[…]

(MAKE NOT MIXED) ​ to rid something of dirty or harmful substances

Whose interpretation, RAW, holds more water? Or, more to the point, would the spell Purify Food and Drink remove physical hazards like bone shards from otherwise normal food?

Please note the school of transmutation. To transmute is to change in form, nature, or substance.

Lie transformation group and the transformation of smooth structure from normal connected subgroup

I’m self-working on two theorems on Lie transformation group from the book Kobayashi transformation group in differential geometry, one is the following

Theorem Let $ \mathfrak{S}$ the group of differentiable transformation of manifold $ M$ and $ \mathcal{S}$ be the set of all vector fields $ X\in\mathfrak{X}(M)$ which generates 1-parameter subgroup $ \varphi_{t}=\text{exp}(tX)$ of transformation for $ M$ such that $ \varphi_{t}\in\mathfrak{S}$ . The set $ \mathcal{S}$ with brackets of vector field define a Lie algebra. Then if $ \mathcal{S}$ is finite-dimensional Lie algebra of vector fields on $ M$ then $ \mathfrak{S}$ is Lie group of transformation and $ \mathcal{S}$ its Lie algebra.

the idea of the proof is quite simple, take the Lie algebra $ \mathfrak{g}^{*}$ generated by $ \mathcal{S}$ , if $ \mathfrak{g}^{*}$ if finite-dimensional then by Lie third theorem there exist simply connected Lie group $ \mathfrak{S}^{*}$ the last can be chosen such that $ \mathfrak{S}^{*}\subset \mathfrak{S}$ using local action etc … , even more it can be shown is normal connected subgroup and open, for now, everything seems normal but then the author claiming that the smooth structure can be transformed to another connected component or simply say to $ \mathfrak{S}$ if I’m not wrong, this where I can’t get it, unless we accept that the left translation or the right for $ g\in\mathfrak{S}$ , the mapping $ L_{g}:\mathfrak{S}^{*}\longrightarrow g.\mathfrak{S}^{*}$ to be differentiable.

My question is about the idea of how we transfer smooth structure from connected normal subgroup?

There’s a paper of Richard S.Plais A global formulation of the lie theory of transformation groups, contains lots of stuff about this, but I couldn’t see where the answer precisely.

normal test to student test, logic behind it

Let’s say we have : $ $ X_i \sim \ N( \mu, \sigma^2 ) $ $ iid

I’m constructing this test function, in order to test two hypothesis on $ \mu$ : $ $ \mathbb { 1} {\{ \sum^n X_i < q_a \} } $ $ where $ q_a$ is the $ a$ -quantile of $ $ P_{ \mu_0 } ( \sum^n X_i < q_a ) $ $

If I know $ \sigma$ , this test is just fine. Because then I can rewrite the test function as : $ $ \mathbb { 1} \{ \frac{ \sum X_i – n \mu_0 }{ \sigma \sqrt{n} } < \phi^{-1} (a) \} $ $

But if I don’t know $ \sigma$ , how can I handle things ? I have been told to replace it by $ S$ , such that : $ $ S^2 = \frac 1 {n-1} \sum^n (X_i – \overline X)^2 $ $

But how do you conclude that the test is now :

$ $ \mathbb { 1} \{ \frac{ \sum X_i – n \mu_0 }{ S \sqrt{n} } < t_{n-1, a} \} $ $ where $ t_{n-1, a} $ is the $ a$ -quantile of the student law with n-1 degrees of freedom?

NVRAM Showing Questionable Payload Variables… Can anyone verify if this is normal?

I used the terminal command in macOS ‘nvram -xp’:

    student:~ admin$   nvram -xp <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"> <dict>     <key>ALS_Data</key>     <data>     AKs=     </data>     <key>LocationServicesEnabled</key>     <data>     AQ==     </data>     <key>SmcFlasherResult</key>     <data>     AAAAAAAAAAAAAAAAAAAAAA==     </data>     <key>SystemAudioVolume</key>     <data>     VA==     </data>     <key>SystemAudioVolumeDB</key>     <data>     6w==     </data>     <key>Test_ALS_Data</key>     <data>     AQA=     </data>     <key>backlight-level</key>     <data>     2Qo=     </data>     <key>bluetoothActiveControllerInfo</key>     <data>     j4KsBQAAAAAzFEjXBbzp6g==     </data>     <key>bluetoothInternalControllerInfo</key>     <data>     j4KsBQAAMxRI1wW86eo=     </data>     <key>boot-gamma</key>     <data>     EAYAAN+cAAAAAAAAwgAAAAAAAAAMAAEGTwQDDl8MySdZLFRQ5FpXXFtnXXYff6OMHJYr     rUC5scSGz3TQ99j995Tz//zo+A4AAQesBAMOFwtQQxZGV1/CYuGHoIenneyeqabNp667     scCxxXvKM8+w0vXWmdq66T3q/fRw9f/80voQAAIIJwQEEO8JTz6PMxJK1zxVV5RIIoh4     biaagXqttECR7rp1lbDABZ3zzmaru+zuzf32n9v++YTh/vuH6P/9//I=     </data>     <key>efi-apple-payload0</key>     <data>     PGFycmF5PjxkaWN0PjxrZXk+SU9NYXRjaDwva2V5PjxkaWN0PjxrZXk+SU9Qcm92aWRl     ckNsYXNzPC9rZXk+PHN0cmluZz5JT01lZGlhPC9zdHJpbmc+PGtleT5JT1Byb3BlcnR5     TWF0Y2g8L2tleT48ZGljdD48a2V5PlVVSUQ8L2tleT48c3RyaW5nPjQ3MUE4QUI0LUVB     NjUtNEQzMC1BM0YzLURENjhFMEEwMjRBNTwvc3RyaW5nPjwvZGljdD48L2RpY3Q+PGtl     eT5CTExhc3RCU0ROYW1lPC9rZXk+PHN0cmluZz5kaXNrMHMxPC9zdHJpbmc+PC9kaWN0     PjxkaWN0PjxrZXk+SU9FRklEZXZpY2VQYXRoVHlwZTwva2V5PjxzdHJpbmc+TWVkaWFG     aWxlUGF0aDwvc3RyaW5nPjxrZXk+UGF0aDwva2V5PjxzdHJpbmc+XEVGSVxBUFBMRVxV     UERBVEVSU1xTTUNcTWFjLTdERjIxQ0IzRUQ2OTc3RTUuc21jPC9zdHJpbmc+PC9kaWN0     PjwvYXJyYXk+AA==     </data>     <key>efi-apple-payload0-data</key>     <data>     AgEMANBBAwoAAAAAAQEGAAUcAQEGAAAAAxIKAAAAAAAAAAQBKgABAAAAKAAAAAAAAAAA     QAYAAAAAALSKGkdl6jBNo/PdaOCgJKUCAgQEZgBcAEUARgBJAFwAQQBQAFAATABFAFwA     VQBQAEQAQQBUAEUAUgBTAFwAUwBNAEMAXABNAGEAYwAtADcARABGADIAMQBDAEIAMwBF     AEQANgA5ADcANwBFADUALgBzAG0AYwAAAH//BAA=     </data>     <key>efi-apple-payload1</key>     <data>     PGFycmF5PjxkaWN0PjxrZXk+SU9NYXRjaDwva2V5PjxkaWN0PjxrZXk+SU9Qcm92aWRl     ckNsYXNzPC9rZXk+PHN0cmluZz5JT01lZGlhPC9zdHJpbmc+PGtleT5JT1Byb3BlcnR5     TWF0Y2g8L2tleT48ZGljdD48a2V5PlVVSUQ8L2tleT48c3RyaW5nPjQ3MUE4QUI0LUVB     NjUtNEQzMC1BM0YzLURENjhFMEEwMjRBNTwvc3RyaW5nPjwvZGljdD48L2RpY3Q+PGtl     eT5CTExhc3RCU0ROYW1lPC9rZXk+PHN0cmluZz5kaXNrMHMxPC9zdHJpbmc+PC9kaWN0     PjxkaWN0PjxrZXk+SU9FRklEZXZpY2VQYXRoVHlwZTwva2V5PjxzdHJpbmc+TWVkaWFG     aWxlUGF0aDwvc3RyaW5nPjxrZXk+UGF0aDwva2V5PjxzdHJpbmc+XEVGSVxBUFBMRVxV     UERBVEVSU1xTTUNcZmxhc2hlcl9iYXNlLnNtYzwvc3RyaW5nPjwvZGljdD48L2FycmF5     PgA=     </data>     <key>efi-apple-payload1-data</key>     <data>     AgEMANBBAwoAAAAAAQEGAAUcAQEGAAAAAxIKAAAAAAAAAAQBKgABAAAAKAAAAAAAAAAA     QAYAAAAAALSKGkdl6jBNo/PdaOCgJKUCAgQEVgBcAEUARgBJAFwAQQBQAFAATABFAFwA     VQBQAEQAQQBUAEUAUgBTAFwAUwBNAEMAXABmAGwAYQBzAGgAZQByAF8AYgBhAHMAZQAu     AHMAbQBjAAAAf/8EAA==     </data>     <key>efi-apple-payload2</key>     <data>     PGFycmF5PjxkaWN0PjxrZXk+SU9NYXRjaDwva2V5PjxkaWN0PjxrZXk+SU9Qcm92aWRl     ckNsYXNzPC9rZXk+PHN0cmluZz5JT01lZGlhPC9zdHJpbmc+PGtleT5JT1Byb3BlcnR5     TWF0Y2g8L2tleT48ZGljdD48a2V5PlVVSUQ8L2tleT48c3RyaW5nPjQ3MUE4QUI0LUVB     NjUtNEQzMC1BM0YzLURENjhFMEEwMjRBNTwvc3RyaW5nPjwvZGljdD48L2RpY3Q+PGtl     eT5CTExhc3RCU0ROYW1lPC9rZXk+PHN0cmluZz5kaXNrMHMxPC9zdHJpbmc+PC9kaWN0     PjxkaWN0PjxrZXk+SU9FRklEZXZpY2VQYXRoVHlwZTwva2V5PjxzdHJpbmc+TWVkaWFG     aWxlUGF0aDwvc3RyaW5nPjxrZXk+UGF0aDwva2V5PjxzdHJpbmc+XEVGSVxBUFBMRVxV     UERBVEVSU1xTTUNcZmxhc2hlcl91cGRhdGUuc21jPC9zdHJpbmc+PC9kaWN0PjwvYXJy     YXk+AA==     </data>     <key>efi-apple-payload2-data</key>     <data>     AgEMANBBAwoAAAAAAQEGAAUcAQEGAAAAAxIKAAAAAAAAAAQBKgABAAAAKAAAAAAAAAAA     QAYAAAAAALSKGkdl6jBNo/PdaOCgJKUCAgQEWgBcAEUARgBJAFwAQQBQAFAATABFAFwA     VQBQAEQAQQBUAEUAUgBTAFwAUwBNAEMAXABmAGwAYQBzAGgAZQByAF8AdQBwAGQAYQB0     AGUALgBzAG0AYwAAAH//BAA=     </data>     <key>efi-apple-payload3</key>     <data>     PGFycmF5PjxkaWN0PjxrZXk+SU9NYXRjaDwva2V5PjxkaWN0PjxrZXk+SU9Qcm92aWRl     ckNsYXNzPC9rZXk+PHN0cmluZz5JT01lZGlhPC9zdHJpbmc+PGtleT5JT1Byb3BlcnR5     TWF0Y2g8L2tleT48ZGljdD48a2V5PlVVSUQ8L2tleT48c3RyaW5nPjQ3MUE4QUI0LUVB     NjUtNEQzMC1BM0YzLURENjhFMEEwMjRBNTwvc3RyaW5nPjwvZGljdD48L2RpY3Q+PGtl     eT5CTExhc3RCU0ROYW1lPC9rZXk+PHN0cmluZz5kaXNrMHMxPC9zdHJpbmc+PC9kaWN0     PjxkaWN0PjxrZXk+SU9FRklEZXZpY2VQYXRoVHlwZTwva2V5PjxzdHJpbmc+TWVkaWFG     aWxlUGF0aDwvc3RyaW5nPjxrZXk+UGF0aDwva2V5PjxzdHJpbmc+XEVGSVxBUFBMRVxV     UERBVEVSU1xTTUNcTWFjLTdERjIxQ0IzRUQ2OTc3RTUuZXBtPC9zdHJpbmc+PC9kaWN0     PjwvYXJyYXk+AA==     </data>     <key>efi-apple-payload3-data</key>     <data>     AgEMANBBAwoAAAAAAQEGAAUcAQEGAAAAAxIKAAAAAAAAAAQBKgABAAAAKAAAAAAAAAAA     QAYAAAAAALSKGkdl6jBNo/PdaOCgJKUCAgQEZgBcAEUARgBJAFwAQQBQAFAATABFAFwA     VQBQAEQAQQBUAEUAUgBTAFwAUwBNAEMAXABNAGEAYwAtADcARABGADIAMQBDAEIAMwBF     AEQANgA5ADcANwBFADUALgBlAHAAbQAAAH//BAA=     </data>     <key>efi-apple-recovery</key>     <data>     PGFycmF5PjxkaWN0PjxrZXk+SU9NYXRjaDwva2V5PjxkaWN0PjxrZXk+SU9Qcm92aWRl     ckNsYXNzPC9rZXk+PHN0cmluZz5JT01lZGlhPC9zdHJpbmc+PGtleT5JT1Byb3BlcnR5     TWF0Y2g8L2tleT48ZGljdD48a2V5PlVVSUQ8L2tleT48c3RyaW5nPjQ3MUE4QUI0LUVB     NjUtNEQzMC1BM0YzLURENjhFMEEwMjRBNTwvc3RyaW5nPjwvZGljdD48L2RpY3Q+PGtl     eT5CTExhc3RCU0ROYW1lPC9rZXk+PHN0cmluZz5kaXNrMHMxPC9zdHJpbmc+PC9kaWN0     PjxkaWN0PjxrZXk+SU9FRklEZXZpY2VQYXRoVHlwZTwva2V5PjxzdHJpbmc+TWVkaWFG     aWxlUGF0aDwvc3RyaW5nPjxrZXk+UGF0aDwva2V5PjxzdHJpbmc+XEVGSVxBUFBMRVxG     SVJNV0FSRVxNQkE2MS5zY2FwPC9zdHJpbmc+PC9kaWN0PjwvYXJyYXk+AA==     </data>     <key>efi-backup-boot-device</key>     <data>     PGFycmF5PjxkaWN0PjxrZXk+SU9NYXRjaDwva2V5PjxkaWN0PjxrZXk+SU9Qcm92aWRl     ckNsYXNzPC9rZXk+PHN0cmluZz5JT01lZGlhPC9zdHJpbmc+PGtleT5JT1Byb3BlcnR5     TWF0Y2g8L2tleT48ZGljdD48a2V5PlVVSUQ8L2tleT48c3RyaW5nPkRCOUFFQ0Y2LTg2     QzYtNDcyOS1CRTk5LUM2N0MzREIxMzgwQTwvc3RyaW5nPjwvZGljdD48L2RpY3Q+PGtl     eT5CTExhc3RCU0ROYW1lPC9rZXk+PHN0cmluZz5kaXNrMXMyPC9zdHJpbmc+PC9kaWN0     PjxkaWN0PjxrZXk+SU9FRklEZXZpY2VQYXRoVHlwZTwva2V5PjxzdHJpbmc+TWVkaWFG     aWxlUGF0aDwvc3RyaW5nPjxrZXk+UGF0aDwva2V5PjxzdHJpbmc+XDFBMzk2RjBBLTlD     NjYtMzVGMy05ODA1LTQ2RDBGNEZENjdCNVxTeXN0ZW1cTGlicmFyeVxDb3JlU2Vydmlj     ZXNcYm9vdC5lZmk8L3N0cmluZz48L2RpY3Q+PC9hcnJheT4A     </data>     <key>efi-backup-boot-device-data</key>     <data>     AgEMANBBAwoAAAAAAQEGAAUcAQEGAAAAAxIKAAAAAAAAAAQBKgACAAAAKEAGAAAAAACw     vxkOAAAAACCV+WedIUZClu42JCLFaBoCAgQDJAD3/HS+fAvzSZFHAfQELmhC9uya28aG     KUe+mcZ8PbE4CgQEmgBcADEAQQAzADkANgBGADAAQQAtADkAQwA2ADYALQAzADUARgAz     AC0AOQA4ADAANQAtADQANgBEADAARgA0AEYARAA2ADcAQgA1AFwAUwB5AHMAdABlAG0A     XABMAGkAYgByAGEAcgB5AFwAQwBvAHIAZQBTAGUAcgB2AGkAYwBlAHMAXABiAG8AbwB0     AC4AZQBmAGkAAAB//wQA     </data>     <key>efi-backup-boot-device-data-data</key>     <data>     AgEMANBBAwoAAAAAAQEGAAUcAQEGAAAAAxIKAAAAAAAAAAQBKgACAAAAKEAGAAAAAACw     vxkOAAAAACCV+WedIUZClu42JCLFaBoCAgQDJAD3/HS+fAvzSZFHAfQELmhC9uya28aG     KUe+mcZ8PbE4CgQEmgBcADEAQQAzADkANgBGADAAQQAtADkAQwA2ADYALQAzADUARgAz     AC0AOQA4ADAANQAtADQANgBEADAARgA0AEYARAA2ADcAQgA1AFwAUwB5AHMAdABlAG0A     XABMAGkAYgByAGEAcgB5AFwAQwBvAHIAZQBTAGUAcgB2AGkAYwBlAHMAXABiAG8AbwB0     AC4AZQBmAGkAAAB//wQA     </data>     <key>efi-boot-device</key>     <data>     PGFycmF5PjxkaWN0PjxrZXk+SU9NYXRjaDwva2V5PjxkaWN0PjxrZXk+SU9Qcm92aWRl     ckNsYXNzPC9rZXk+PHN0cmluZz5JT01lZGlhPC9zdHJpbmc+PGtleT5JT1Byb3BlcnR5     TWF0Y2g8L2tleT48ZGljdD48a2V5PlVVSUQ8L2tleT48c3RyaW5nPkRCOUFFQ0Y2LTg2     QzYtNDcyOS1CRTk5LUM2N0MzREIxMzgwQTwvc3RyaW5nPjwvZGljdD48L2RpY3Q+PGtl     eT5CTExhc3RCU0ROYW1lPC9rZXk+PHN0cmluZz5kaXNrMXMyPC9zdHJpbmc+PC9kaWN0     PjxkaWN0PjxrZXk+SU9FRklEZXZpY2VQYXRoVHlwZTwva2V5PjxzdHJpbmc+TWVkaWFG     aWxlUGF0aDwvc3RyaW5nPjxrZXk+UGF0aDwva2V5PjxzdHJpbmc+XDFBMzk2RjBBLTlD     NjYtMzVGMy05ODA1LTQ2RDBGNEZENjdCNVxTeXN0ZW1cTGlicmFyeVxDb3JlU2Vydmlj     ZXNcYm9vdC5lZmk8L3N0cmluZz48L2RpY3Q+PC9hcnJheT4A     </data>     <key>efi-boot-device-data</key>     <data>     AgEMANBBAwoAAAAAAQEGAAUcAQEGAAAAAxIKAAAAAAAAAAQBKgACAAAAKEAGAAAAAACw     vxkOAAAAACCV+WedIUZClu42JCLFaBoCAgQDJAD3/HS+fAvzSZFHAfQELmhC9uya28aG     KUe+mcZ8PbE4CgQEmgBcADEAQQAzADkANgBGADAAQQAtADkAQwA2ADYALQAzADUARgAz     AC0AOQA4ADAANQAtADQANgBEADAARgA0AEYARAA2ADcAQgA1AFwAUwB5AHMAdABlAG0A     XABMAGkAYgByAGEAcgB5AFwAQwBvAHIAZQBTAGUAcgB2AGkAYwBlAHMAXABiAG8AbwB0     AC4AZQBmAGkAAAB//wQA     </data>     <key>fmm-computer-name</key>     <data>     c3R1ZGVudA==     </data>     <key>fmm-mobileme-token-FMM</key>     <data>     YnBsaXN0MDDdAQIDBAUGBwgJCgsMDQ4PFhcOGA4ZGhscHR9fEA91bnJlZ2lzdGVyU3Rh     dGVYdXNlckluZm9ZYXV0aFRva2VuXxARb3NVc2VyRGlzYXBwZWFyZWReZGlzYWJsZUNv     bnRleHRWdXNlcmlkXWVuYWJsZUNvbnRleHRYdXNlcm5hbWVYcGVyc29uSURXYWRkVGlt     ZVRndWlkXxASZW5hYmxlZERhdGFjbGFzc2VzXxATZGF0YWNsYXNzUHJvcGVydGllcxAA     0xAREhMUFV8QFUluVXNlT3duZXJEaXNwbGF5TmFtZV8QE0luVXNlT3duZXJGaXJzdE5h     bWVfEBJJblVzZU93bmVyTGFzdE5hbWVcWXVqaSBPa2FtdXJhVFl1amlXT2thbXVyYV8Q     KEFRQUFBQUJaSE5laWdadGl5VUg4dlZ6Q3JDMnN1MmxadUoxNTZXc34JEQH1XxAbeXVq     aS5va2FtdXJhQG91c2QuazEyLmNhLnVzWjgzNDQxNzE4MDEjQdZHNekcAypfECQzMzYw     MkRERS1EMzI3LTRBRjYtOUY3MS03ODY2MzZERjM3NjOhHl8QIWNvbS5hcHBsZS5EYXRh     Y2xhc3MuRGV2aWNlTG9jYXRvctEeINUhIiMkJSYnKCkqVmFwc0Vudlhob3N0bmFtZV1p     ZHNJZGVudGlmaWVyVnNjaGVtZV1hdXRoTWVjaGFuaXNtWlByb2R1Y3Rpb25fEBNwMjYt     Zm1pcC5pY2xvdWQuY29tXxAkRDQ0MDFGNEUtRkI3QS00M0EyLThCRUEtMDhFMUM2RDAz     NjU4VWh0dHBzVXRva2VuAAgAIwA1AD4ASABcAGsAcgCAAIkAkgCaAJ8AtADKAMwA0wDr     AQEBFgEjASgBMAFbAVwBXwF9AYgBkQG4AboB3gHhAewB8wH8AgoCEQIfAioCQAJnAm0A     AAAAAAACAQAAAAAAAAArAAAAAAAAAAAAAAAAAAACcw==     </data>     <key>fmm-mobileme-token-FMM-BridgeHasAccount</key>     <data>     QnJpZGdlSGFzQWNjb3VudFZhbHVl     </data>     <key>prev-lang:kbd</key>     <data>     ZW4tVVM6MA==     </data> </dict> </plist>