My output is washed out when in windowed

I have the following setup:

RGBA8_Unorm_srgb swapchain buffer
RGBA16Float render targets
RGBA8_Unorm_srgb color textures
RGBA8_Unorm tangent normals textures

I use the render targets for actual rendering. In the very last step in my pipeline, I use the render target as a shader resource and do a fullscreen post processing via shader onto the swapchain buffer as render target

However, I noticed that when I am in fullscreen, I have darker (desired) output compared to when I am in windowed. In Windowed, everything looks washed out and brighter.

Windowed

Fullscreen

What is the cause of this?

AnyDice: semantics of output headers in “export” view

I hope this is on-topic: In AnyDice, when choosing the "Export" view, output d6 is displayed as:

"output 1",3.5000000000069997,1.707825127661641,1,6 #,% 1,16.6666666667 2,16.6666666667 3,16.6666666667 4,16.6666666667 5,16.6666666667 6,16.6666666667 

I’m not quite sure what the numbers in the first line signify, the last two (1 and 6) are presumably the range of values that the rolls can take on but what about the other two (3.5 and 1.7…)? I have not been able to figure this out from the documentation.

How to output choices from a custom sortable checkboxes control via Customizer settings

I’m trying to dynamically output some settings from theme Customizer. I use this custom controls, Example 3.

How can I display the settings so that the selected options appear as well as in the order in which they were placed in Customizer?

So far I’ve tried without success:

    $  box = get_theme_mod( 'sample_pill_checkbox3' ) ;       switch ( $  box ) {                  case 'author':                 echo 'Author';                 break;                  case 'date':                 echo 'Date' ;                 break; } 

Basically, if Author and Date is selected and Date is placed first, so I would need to appear in the frontend, Date first then Author.

Thank you!

General::stop: Further output of ParametricNDSolveValue::ndsz will be suppressed during this calculation

How to overcome this error?

ode = D[theta[x], {x, 2}] == SH*theta[x]^2 sol = ParametricNDSolveValue[{ode, theta[0] == 1, theta'[1] == 0}, theta[x], {x, 0, 1}, {SH}] Ns[SH_, Tr_] := SH*sol[SH]*(Log[1 + Tr*sol[SH]] - sol[SH]/(sol[SH] + (Tr - 1)^(-1))) Plot[Ns[10, 1.2], {x, 0, 1}] 

General::stop: Further output of ParametricNDSolveValue::ndsz will be suppressed during this calculation.

WolframClient Converting Output Of Solve To Sympy

I’m trying to convert the output of WolframClient to Python. Here’s a toy example:

from wolframclient.evaluation import WolframLanguageSession from wolframclient.language import wl, wlexpr  def get_session():     session = WolframLanguageSession()     session.evaluate(wlexpr('Range[5]')) #warmup     return session  session = get_session() print(session.evaluate("Solve[a[0]==5/3,a[0]]]")) 

Giving

((Rule[Global`a[0], Rational[5, 3]],),) 

I’m hoping to instead get something simpler (a string is sufficient):

"a[0] = 5/3" 

Motivation:

Ideally I’d like to port the output of mathematica to Sympy. I’ve tried Sympy’s Mathematica parser, but it doesn’t recognize any of the "non-whitelisted" expressions such as Rational[5,3]. I’ve tried using Mathematica’s InputForm function but that doesn’t seem to work.

What does the “{ }” displayed in the output mean?

When I solved the simultaneous equations, the result was derived as "{ }". The input is as follows.

    s /. Out[112]     θ /. Out[113]      {(-((36*a*θ)/(-36 + 9*b^2 + 2*θ^2)^2) + (18*a*     b*θ)/(-36 + 9*b^2 + 2*θ^2)^2 + (2*     a*(-2 + b)*θ)/(-72 + 18*b^2 + 4*θ^2) -      (4*a*(-2 + b)*θ)/(36*(-4 + b^2) +      8*θ^2) - (18*(-2 + b)*θ*     Subscript[c, f])/(-36 + 9*b^2 +      2*θ^2)^2 - (2*(-2 + b)*θ*     Subscript[c, f])/(-72 + 18*b^2 + 4*θ^2) +      (4*θ*((-2 + b)*Subscript[c, f] -       2*Subscript[c, h]))/(36*(-4 + b^2) +      8*θ^2) + (36*θ*     Subscript[c, h])/(-36 + 9*b^2 + 2*θ^2)^2 +      (4*θ*Subscript[c, h])/(-72 + 18*b^2 +      4*θ^2))/((18*θ^2)/(-36 + 9*b^2 +      2*θ^2)^2 - (18*(-2 + b)*(2 + b))/(-72 + 18*b^2 +      4*θ^2) +      (18*(-2 + b)*(2 + b))/(36*(-4 + b^2) + 8*θ^2))}      Out[115]      Rs = Out[114]     Rθ = Out[115]      {(-((36*a*θ)/(-36 + 9*b^2 + 2*θ^2)^2) + (18*a*     b*θ)/(-36 + 9*b^2 + 2*θ^2)^2 + (2*     a*(-2 + b)*θ)/(-72 + 18*b^2 + 4*θ^2) -      (4*a*(-2 + b)*θ)/(36*(-4 + b^2) +     8*θ^2) - (18*(-2 + b)*θ*    Subscript[c, f])/(-36 + 9*b^2 +      2*θ^2)^2 - (2*(-2 + b)*θ*    Subscript[c, f])/(-72 + 18*b^2 + 4*θ^2) +      (4*θ*((-2 + b)*Subscript[c, f] -       2*Subscript[c, h]))/(36*(-4 + b^2) +     8*θ^2) + (36*θ*    Subscript[c, h])/(-36 + 9*b^2 + 2*θ^2)^2 +      (4*θ*Subscript[c, h])/(-72 + 18*b^2 +     4*θ^2))/((18*θ^2)/(-36 + 9*b^2 +      2*θ^2)^2 - (18*(-2 + b)*(2 + b))/(-72 + 18*b^2 +     4*θ^2) +      (18*(-2 + b)*(2 + b))/(36*(-4 + b^2) + 8*θ^2))}     Out[117]     Solve[{s - Rs == 0, θ - Rθ == 0}, {s, θ}]     {} 

If a symbol such as "{ }" appears in the output, what does this mean? When the equation is wrong or the calculation is wrong, does a symbol like "{ }" appear in the output?

I want to use the output of Solve and/or Reduce in next steps. But the output comes in the form of a rule [duplicate]

In a program I want to use the output of Solve and/or Reduce in next steps. But the output comes in the form of a rule, where what I want is the numerical solution. Here is an example. Say I write s=Solve[x+2==5,x]. In the next step I want to use this solution, so I write: y=2 s +3. This returns {{3+2(x->3)}}. This is a very basic need, but hours combing through the documentation leads nowhere.

Why Mathematica is not producing output and taking too much time

I’m trying to solve the given system of ODES but the Mathematica is taking too much time and not producing any output. I was trying to check the error by evaluating one one command but there was no error in any command but the equations EOM2, and EOM3 was taking too much time when I was trying to evaluate the equations.

For simple case aa=0, code works, but when I take non-zero aa, it takes a long time and didn’t produce output.

Can anyone please guide me how can I fix this problem? Is there any command in Mathematica that can be used to obtain the fast output?

 R2[r_, \[Theta]_] := r^2 + aa^2 Cos[\[Theta]]^2;  TR[r_, \[Theta]_] := r^2 - 2 M r + aa^2;   gtt[r_, \[Theta]_] := -(1 - (2 M r)/R2[r, \[Theta]]);  gt\[Phi][r_, \[Theta]_] := -(( 2 r M aa Sin[\[Theta]]^2)/    R2[r, \[Theta]]); g\[Phi]\[Phi][   r_, \[Theta]_] := (r^2 +      aa^2 + (2  M r (aa^2) )/       R2[r, \[Theta]] Sin[\[Theta]]^2) Sin[\[Theta]]^2;  grr[r_, \[Theta]_] := R2[r, \[Theta]]/TR[r, \[Theta]];  g\[Theta]\[Theta][r_, \[Theta]_] := R2[r, \[Theta]];   gUtt[r_, \[Theta]_] := -(1/    TR[r, \[Theta]]) (r^2 +      aa^2 + (2  M r (aa^2) )/ R2[r, \[Theta]] Sin[\[Theta]]^2);  gUt\[Phi][r_, \[Theta]_] := -((2 M aa r)/(   TR[r, \[Theta]] R2[r, \[Theta]]));  gU\[Phi]\[Phi][r_, \[Theta]_] := (  TR[r, \[Theta]] - aa^2 Sin[\[Theta]]^2)/(  TR[r, \[Theta]] R2[r, \[Theta]] Sin[\[Theta]]^2);  gUrr[r_, \[Theta]_] := TR[r, \[Theta]]/R2[r, \[Theta]];  gU\[Theta]\[Theta][r_, \[Theta]_] := 1/R2[r, \[Theta]]; M = 1; n = 4; glo = FullSimplify[{ {gtt[r, \[Theta]], 0, 0,       gt\[Phi][r, \[Theta]]}, {0, grr[r, \[Theta]], 0, 0}, {0, 0,       g\[Theta]\[Theta][r, \[Theta]], 0}, {gt\[Phi][r, \[Theta]], 0, 0,       g\[Phi]\[Phi][r, \[Theta]]}}]; gup = FullSimplify[{ {gUtt[r, \[Theta]], 0, 0,       gUt\[Phi][r, \[Theta]]}, {0, gUrr[r, \[Theta]], 0, 0}, {0, 0,       gU\[Theta]\[Theta][r, \[Theta]], 0}, {gUt\[Phi][r, \[Theta]], 0,       0, gU\[Phi]\[Phi][r, \[Theta]]}}];   dglo = Simplify[Det[glo]];  crd = {t, r, \[Theta], \[Phi]};  Xup = {t[\[Tau]], r[\[Tau]], \[Theta][\[Tau]], \[Phi][\[Tau]]}; Vup = {Vt, Vr, V\[Theta], V\[Phi]}; Pup = {Pt[\[Tau]], Pr[\[Tau]], P\[Theta][\[Tau]], P\[Phi][\[Tau]]};  Sup = {{Stt[\[Tau]], Str[\[Tau]], St\[Theta][\[Tau]],      St\[Phi][\[Tau]]},     {Srt[\[Tau]], Srr[\[Tau]], Sr\[Theta][\[Tau]], Sr\[Phi][\[Tau]]},    {S\[Theta]t[\[Tau]], S\[Theta]r[\[Tau]], S\[Theta]\[Theta][\[Tau]],      S\[Theta]\[Phi][\[Tau]]},    {S\[Phi]t[\[Tau]], S\[Phi]r[\[Tau]], S\[Phi]\[Theta][\[Tau]],      S\[Phi]\[Phi][\[Tau]]}};   christoffel =    Table[(1/2)*     Sum[(gup[[i, s]])*(D[glo[[s, k]], crd[[j]] ] +          D[glo[[s, j]], crd[[k]] ] - D[glo[[j, k]], crd[[s]] ]), {s, 1,        n}], {i, 1, n}, {j, 1, n}, {k, 1, n}] ;   riemann =   Table[ D[christoffel[[i, j, l]], crd[[k]] ] -      D[christoffel[[i, j, k]], crd[[l]] ] +      Sum[christoffel[[s, j, l]] christoffel[[i, k, s]] -        christoffel[[s, j, k]] christoffel[[i, l, s]],      {s, 1, n}], {i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}] ;   loriemann =    Table[Sum[glo[[i, m]]*riemann[[m, j, k, l]], {m, 1, n}], {i, 1,      n}, {j, 1, n}, {k, 1, n}, {l, 1, n}] ;   EOM1 = Table[ D[Xup[[a]], \[Tau]] == Vup[[a]] , {a, 1, n}];    EOM2 = Table[     D[Pup[[a]], \[Tau]] + \!\( \*UnderoverscriptBox[\(\[Sum]\), \(b = 1\), \(n\)]\( \*UnderoverscriptBox[\(\[Sum]\), \(c =           1\), \(n\)]christoffel[\([\)\(a, b, c\)\(]\)]*         Pup[\([\)\(b\)\(]\)]*Vup[\([\)\(c\)\(]\)]\)\) == -(1/2) \!\( \*UnderoverscriptBox[\(\[Sum]\), \(b = 1\), \(n\)]\( \*UnderoverscriptBox[\(\[Sum]\), \(c = 1\), \(n\)]\( \*UnderoverscriptBox[\(\[Sum]\), \(d = 1\), \(n\)]riemann[\([\)\(a,            b, c, d\)\(]\)]*Vup[\([\)\(b\)\(]\)]*          Sup[\([\)\(c, d\)\(]\)]\)\)\),    {a, 1, n}];  EOM3 = Table[     D[Sup[[a, b]], \[Tau]] + \!\( \*UnderoverscriptBox[\(\[Sum]\), \(c = 1\), \(n\)]\( \*UnderoverscriptBox[\(\[Sum]\), \(d =           1\), \(n\)]christoffel[\([\)\(a, c, d\)\(]\)]*         Sup[\([\)\(c, b\)\(]\)]*Vup[\([\)\(d\)\(]\)]\)\) + \!\( \*UnderoverscriptBox[\(\[Sum]\), \(c = 1\), \(n\)]\( \*UnderoverscriptBox[\(\[Sum]\), \(d =           1\), \(n\)]christoffel[\([\)\(b, c, d\)\(]\)]*         Sup[\([\)\(a, c\)\(]\)]*Vup[\([\)\(d\)\(]\)]\)\) ==      Pup[[a]]*Vup[[b]] - Pup[[b]]*Vup[[a]],    {a, 1, n}, {b, 1, n}];    Wfactor = 4*\[Mu]^2 + \!\( \*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(4\)]\( \*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(4\)]\( \*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(4\)]\( \*UnderoverscriptBox[\(\[Sum]\), \(l =           1\), \(4\)]\((loriemann[\([\)\(i, j, k,            l\)\(]\)]*\((Sup[\([\)\(i, j\)\(]\)])\)*\ \((Sup[\([\)\(k,             l\)\(]\)])\))\)\)\)\)\);  Wvec = Table[2/(\[Mu]*Wfactor)*(\!\( \*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(4\)]\( \*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(4\)]\( \*UnderoverscriptBox[\(\[Sum]\), \(m = 1\), \(4\)]\( \*UnderoverscriptBox[\(\[Sum]\), \(l = 1\), \(4\)]Sup[\([\)\(j,             i\)\(]\)]*           Pup[\([\)\(k\)\(]\)]*\((loriemann[\([\)\(i, k, l,              m\)\(]\)])\)*\((Sup[\([\)\(l, m\)\(]\)])\)\)\)\)\)), {j,      1, n}];   NN = 1/Sqrt[1 - \!\( \*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(4\)]\( \*UnderoverscriptBox[\(\[Sum]\), \(k =         1\), \(4\)]\((glo[\([\)\(i, k\)\(]\)])\)*Wvec[\([\)\(i\)\(]\)]*       Wvec[\([\)\(k\)\(]\)]\)\)];   {Vt, Vr, V\[Theta], V\[Phi]} = NN (Wvec + Pup);  EOM = Flatten[    Join[{EOM1, EOM2, EOM3} /.          r -> r[\[Tau]] /. \[Theta] -> \[Theta][\[Tau]] /.        Derivative[1][r[\[Tau]]][\[Tau]] -> Derivative[1][r][\[Tau]] /.       Derivative[1][\[Theta][\[Tau]]][\[Tau]] ->        Derivative[1][\[Theta]][\[Tau]]]];  INT1 = {t[0] == 0,     r[0] == r0, \[Theta][0] == \[Theta]0, \[Phi][0] == 0}; INT2 = {Pt[0] == 1.32288, Pr[0] == 0, P\[Theta][0] == 0,     P\[Phi][0] == 0.07143}; INT3 = {{Stt[0] == 0, Str[0] == 0, St\[Theta][0] == 0,      St\[Phi][0] == 0},     {Srt[0] == 0, Srr[0] == 0, Sr\[Theta][0] == 0, Sr\[Phi][0] == 0},    {S\[Theta]t[0] == 0, S\[Theta]r[0] == 0, S\[Theta]\[Theta][0] == 0,      S\[Theta]\[Phi][0] == 0},    {S\[Phi]t[0] == 0, S\[Phi]r[0] == 0, S\[Phi]\[Theta][0] == 0,      S\[Phi]\[Phi][0] == 0}}; INT = Flatten[Join[{INT1, INT2, INT3}]]; r0 = 7; \[Theta]0 = Pi/2; \[Mu] = 1; aa = 0.5; M = 1;  NDSolve[Flatten[Join[{EOM, INT}]], {t, r, \[Theta], \[Phi], Pt, Pr,    P\[Theta], P\[Phi], Stt, Str, St\[Theta], St\[Phi], Srt, Srr,    Sr\[Theta], Sr\[Phi],   S\[Theta]t, S\[Theta]r, S\[Theta]\[Theta], S\[Theta]\[Phi],    S\[Phi]t, S\[Phi]r, S\[Phi]\[Theta], S\[Phi]\[Phi]}, {\[Tau], 0,    1000}] 

Using output from Solve or Reduce as a value in subsequent equation

I’m trying to run a simulation. I will number sentences to make response easier. (1) Here is my first equation:

𝑗[LBar_, y_, x1_, σ_, X2M_, w_, X1M_]:=(LBar(𝜎−1)⁄𝜎 + 𝑦(𝜎−1)⁄𝜎−x1(𝜎−1)⁄𝜎)𝜎⁄(𝜎−1)−(𝑦−X2M+𝑤(LBar+X1M)−𝑤x1) 

(2) I insert some parameter values and Reduce:

Reduce[𝜕x1(𝑗[100,𝑦,x1,13⁄,42,.23,80])==0 && x1>0, x1, Reals] 

(3) This produces output:

x1 == 119.575 

(4) When I try to call the output value (119.575) I run into problems. (5) For instance

2 % 

results in:

2 (x1 == 119.575) 

(6) and

j[100, 80, %[[2]], 1/3, 42, .23, 80] 

produces this output:

-79.4 + 1/Sqrt[41/160000 - 1/239.149[[2]]^2] + 0.23 239.149[[2]] 

previous_posts_link & next_posts_link doesn’t generate any output

Hey I am using a WPQuery to loop through and show blog categories in posts. It’s in a page tempplate. has 21 posts and I want them to show 10 per page with navigation links for next pages of 10 posts but below code is not outputting that buttons

enter image description here

<div class="container-blog-post d-flex flex-wrap justify-content-start">          <?php  $  paged = ( get_query_var( 'paged' ) ) ? get_query_var( 'paged' ) : 1;         $  args = array(             'post_type'      => 'post',             'category_name'  => 'blog',             'posts_per_page' => 10,             'orderby'        => 'date',             'order'          => 'DESC',              'paged' => $  paged         );          $  the_query = new WP_Query( $  args ); ?>          <?php if ( $  the_query->have_posts() ) : ?>              <?php while ( $  the_query->have_posts() ) : $  the_query->the_post();                    if(has_post_thumbnail()) {                     $  image = get_the_post_thumbnail_url();                 }else{                     $  image = get_template_directory_uri().'/assets/images/default.svg';                 }                                             $  url   = get_permalink();                 $  title = get_the_title();                 $  text  = excerpt(20);                 $  date = get_the_date();              ?>                                <a href="<?php echo $  url; ?>" class="single-post card">                 <figure class="image-wrapping">                   <img src="<?php echo $  image; ?>" alt="">                 </figure>                 <div class="body-post card-body">                   <h3 class="title-post card-title"><?php echo $  title; ?></h3>                   <p class="card-text line-clamp-2"><?php echo excerpt(10); ?></p>                   <button class="btn-read-more arrow">Read more</button>                   <div class="button-post">                     <span class="date-post"><?php echo $  date; ?></span><span class="author-post"><?php echo the_author(); ?></span>                   </div>                 </div>               </a>                <?php endwhile; ?>                      <div class="previous">                 <?php previous_posts_link(); ?>         </div>         <div class="next">             <?php next_posts_link(); ?>         </div>             <?php wp_reset_postdata(); ?>         <?php endif; ?>        </div>