Hello
Feature Request ?
But maybe is only a dream…

100% Private Proxies – Fast, Anonymous, Quality, Unlimited USA Private Proxy!
Get your private proxies now!
Hello
Feature Request ?
I start new project on GSA and got this error when run campaign
22:31:35: [ ] Attention! Option “Verify submitted links” is disabled in project options.
Can somebody help me how to fix this error?
Thank you
I received an email like this above:
-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA1 Because anyone can claim to be me. There's no validation of the user name or email address when someone posts a comment. While I do try to remove imposters, some may slip through. By signing my comments using this technique, anyone can independently verify that I was the author of the message by validating the signature. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.6 (MingW32) iD8DBQFFxqRFCMEe9B/8oqERAqA2AJ91Tx4RziVzY4eR4Ms4MFsKAMqOoQCgg7y6 e5AJIRuLUIUikjNWQIW63QE= =aAhr -----END PGP SIGNATURE-----
And another email with the public key. How can I verify if the signature is valid using the Enigmail in Thunderbird?
We have an exe file that our members have been using. It was submitted to VirusTotal and it returned one red flag:
How can we have the app evaluated by a 3rd party software engineer? And how likely is it the app can be evaluated accurately?
This is my first post here so do let me know if I should make any amendments accordingly.
Thanks in advance for any help in resolving this!
I’m testing out different ways of storing encrypted data. I already have a way to encrypt/decrypt data, But I am now looking at ways to implement proper password hashing (and to also use this hashed password as the key for the encryption of the other data – but I will raise this in another thread once I get to that point).
I am developing using VS2019 in a Windows 10 x64 environment. Whilst I’m not new to programming, I am learning C# (from VB.NET), and I’m certainly no expert in Cryptography.
I’m using an implementation of Argon2 that I found recommended in this post to learn how to securely store/hash passwords.
I can get the hashing process to work (whilst customising the configuration). However, when it comes to verifying the hash, I cannot verify the hash if I use any other hash length apart from 32 – I can play around with the other config settings and it works, but not the hash length.
BUT, where it gets really weird, when I generate a hash that uses a hash length not equal to 32, I verify it using this site, and I get a successful verification
Namespace:
using System.Security.Cryptography; using Isopoh.Cryptography.Argon2; using Isopoh.Cryptography.SecureArray;
Variable:
private static readonly RandomNumberGenerator Rng = RandomNumberGenerator.Create();
Hashing code:
string str_ConsoleText; txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText("[START NEW HASH]"); txtConsole.AppendText(Environment.NewLine); str_ConsoleText = "Starting encryption process"; txtConsole.AppendText(str_ConsoleText); txtConsole.AppendText(Environment.NewLine); var stopwatch = Stopwatch.StartNew(); //var password = "password1"; var password = txtPasword.Text; byte[] passwordBytes = Encoding.UTF8.GetBytes(password); byte[] salt = new byte[16]; Rng.GetBytes(salt); txtSalt.Text = salt.ToString(); var config = new Argon2Config { Type = Argon2Type.HybridAddressing, Version = Argon2Version.Nineteen, TimeCost = Int32.Parse(txtIterations.Text), MemoryCost = Int32.Parse(txtMemory.Text) * 1024, Lanes = Int32.Parse(txtParallelism.Text), Threads = Int32.Parse(txtThreads.Text), Password = passwordBytes, Salt = salt, // >= 8 bytes if not null //Secret = secret, // from somewhere //AssociatedData = associatedData, // from somewhere HashLength = Int32.Parse(txtHashLength.Text) //20 // >= 4 }; var argon2A = new Isopoh.Cryptography.Argon2.Argon2(config); string hashString; using (SecureArray<byte> hashA = argon2A.Hash()) { hashString = config.EncodeString(hashA.Buffer); } txtHashResult.Text = hashString; stopwatch.Stop(); str_ConsoleText = "Encoded hash is: "; txtConsole.AppendText(str_ConsoleText); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText(hashString); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText("Details are:"); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText("Time cost: " + config.TimeCost.ToString()); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText("Memory cost: " + config.MemoryCost.ToString()); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText("Lanes: " + config.Lanes.ToString()); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText("Threads: " + config.Threads.ToString()); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText("Salt: " + config.Salt.ToString()); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText("Hash length: " + config.HashLength.ToString()); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText(Environment.NewLine); str_ConsoleText = $ "Encryption process took { stopwatch.ElapsedMilliseconds / 1024.0 } s"; txtConsole.AppendText(str_ConsoleText); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText("[END HASH]");
Verifying code:
var stopwatch = Stopwatch.StartNew(); string str_ConsoleText; var password = txtPasword.Text; var passwordHash = txtHashResult.Text; txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText("[START VERIFY HASH]"); txtConsole.AppendText(Environment.NewLine); str_ConsoleText = "Starting verification process"; txtConsole.AppendText(str_ConsoleText); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText(Environment.NewLine); str_ConsoleText = "[Hash to verify]: "; txtConsole.AppendText(str_ConsoleText); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText(passwordHash.ToString()); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText(Environment.NewLine); if (Isopoh.Cryptography.Argon2.Argon2.Verify(passwordHash, password)) { // do stuff str_ConsoleText = "!!!!!!!!!!HASH VERIFICATION SUCCESS!!!!!!!!!!"; txtConsole.AppendText(str_ConsoleText); } else { str_ConsoleText = "******HASH VERIFICATION FAILED******"; txtConsole.AppendText(str_ConsoleText); } stopwatch.Stop(); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText(Environment.NewLine); str_ConsoleText = $ "Verification process took { stopwatch.ElapsedMilliseconds / 1024.0 } s"; txtConsole.AppendText(str_ConsoleText); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText(Environment.NewLine); txtConsole.AppendText("[END VERIFY HASH]");
Password = Hello World!
Hash length = 32:
[START NEW HASH] Starting encryption process Encoded hash is: $ argon2id$ v=19$ m=32768,t=4,p=8$ bPsTGKZu/reihfAlLEVlCA$ o79dNC9/toz7CbbFhhkSy4/E2a5pRETd7h+79R7V7iU Details are: Time cost: 4 Memory cost: 32768 Lanes: 8 Threads: 4 Salt: System.Byte[] Hash length: 32 Encryption process took 2.130859375 s [END HASH] [START VERIFY HASH] Starting verification process [Hash to verify]: $ argon2id$ v=19$ m=32768,t=4,p=8$ bPsTGKZu/reihfAlLEVlCA$ o79dNC9/toz7CbbFhhkSy4/E2a5pRETd7h+79R7V7iU !!!!!!!!!!HASH VERIFICATION SUCCESS!!!!!!!!!! Verification process took 1.3115234375 s [END VERIFY HASH]
Argon2.online hash verification:
Hash length = 64:
[START NEW HASH] Starting encryption process Encoded hash is: $ argon2id$ v=19$ m=32768,t=4,p=8$ h/zEPuZWQsBSAPhZn23gRQ$ 6FZzr5DhOMemPTzZ5WY+4MgsxKsxYLNuRbiKo8og+FoYOJFfBsfdCtr1Zs8z6lXVX+E7FUYsGaLA2ZESH6aE0w Details are: Time cost: 4 Memory cost: 32768 Lanes: 8 Threads: 4 Salt: System.Byte[] Hash length: 64 Encryption process took 2.0400390625 s [END HASH] [START VERIFY HASH] Starting verification process [Hash to verify]: $ argon2id$ v=19$ m=32768,t=4,p=8$ h/zEPuZWQsBSAPhZn23gRQ$ 6FZzr5DhOMemPTzZ5WY+4MgsxKsxYLNuRbiKo8og+FoYOJFfBsfdCtr1Zs8z6lXVX+E7FUYsGaLA2ZESH6aE0w ******HASH VERIFICATION FAILED****** Verification process took 1.3076171875 s [END VERIFY HASH]
Argon2.online hash verification:
Decision Problem: Given integers as inputs for $ K$ and $ M$ . Is the sum of $ 2^k$ + $ M$ a $ prime$ ?
m = int(input('Enter integer for M: ')) sum_of_2**K+M=int(input('enter the sum of 2^k+m: ')) if AKS.sum_of_2**K+M == True: # Powers of 2 can be verified in O(N) time # make sure there is all 0-bits after the 1st ONE-bit # Use difference to verify problem if sum_of_2**K+M - (M) is a power_of_2: OUTPUT Solution Verified
The powers of 2 have approximately $ 2^n$ digits. Consider $ 2^k$ where $ K$ = 100000. Compare the amount of digits in $ K$ to the amount of digits in it’s solution! Also take note that the powers of 2 have $ 2^n$ bits as its 0-bit Unary essentially for the exponent $ n$ .
How would a non-deterministic machine solve this problem in polynomial time?
A lot of websites send a 4-digit or 6-digit one-time code to a mobile number via SMS or phone call when the user registers a mobile number on the website?
Is this a secure way to validate the ownership of mobile number? Are there any issues with it?
If it is not secure, are there any better alternatives?
This is a broader question but here a concret example:
From https://www.apache.org/info/verification.html :
File hashes are used to check that a file has been downloaded correctly. They do not provide any guarantees as to the authenticity of the file.
I don’t understand this part: They do not provide any guarantees as to the authenticity of the file.
The checksum used is from a trusted HTTPS source (Eg: https://downloads.apache.org/tomcat/tomcat-8/v8.5.56/bin/apache-tomcat-8.5.56.zip.sha512).
How a file can not be authentic if it match a checksum from a HTTPS trusted source?
Or do I miss something and I still need to validate with a GPG key?
Mathematica finds
Integrate[Exp[I*s]/(1 + s/(s^2 - 1)^2), {s, -Infinity, Infinity}, PrincipalValue -> True] // ToRadicals (*A huge closed-form expression which is omitted here.*) N[%] (*-1.414 + 0.192275 I*)
The use of the principal value is grounded by the plots
Plot[{Cos[s]/(1 + s/(s^2 - 1)^2),Sin[s]/(1 + s/(s^2 - 1)^2)},{s,-5,5},WorkingPrecision->30,PlotPoints -> 50]
It’s clear that the integrand has its real singularities at the real roots of the denominator, so
sol = Reduce[1 + s/(s^2 - 1)^2 == 0, s, Reals] // ToRadicals; sol[[1]][[2]] (*-(1/(2 Sqrt[3/(4 + (155/2 - (3 Sqrt[849])/2)^(1/3) + (1/2 (155 + 3 Sqrt[849]))^(1/3))])) - 1/2 Sqrt[8/3 - 1/3 (155/2 - (3 Sqrt[849])/2)^(1/3) - 1/3 (1/2 (155 + 3 Sqrt[849]))^(1/3) + 2 Sqrt[3/( 4 + (155/2 - (3 Sqrt[849])/2)^(1/3) + (1/2 (155 + 3 Sqrt[849]))^( 1/3))]]*) N[%] (*-1.49022*) sol[[2]][[2]] (*-(1/(2 Sqrt[3/(4 + (155/2 - (3 Sqrt[849])/2)^(1/3) + (1/2 (155 + 3 Sqrt[849]))^(1/3))])) + 1/2 Sqrt[8/3 - 1/3 (155/2 - (3 Sqrt[849])/2)^(1/3) - 1/3 (1/2 (155 + 3 Sqrt[849]))^(1/3) + 2 Sqrt[3/( 4 + (155/2 - (3 Sqrt[849])/2)^(1/3)+(1/2 (155 + 3 Sqrt[849]))^( 1/3))]]*)
However, I have doubts concerning the obtained principal value because the integrand asymptotically equals $ \exp(is)$ as $ s\to \infty$ and $ s\to -\infty$ and $ $ PV\int_{-\infty}^\infty \exp(is)\,ds $ $ does not exist.
In view of it I try to verify it numerically through
NIntegrate[Exp[I*s]/(1+s/(s^2-1)^2),{s,-Infinity, -(1/(2 Sqrt[3/(4+(155/2-(3 Sqrt[849])/2)^(1/3)+(1/2 (155+3 Sqrt[849]))^(1/3))]))- 1/2 Sqrt[8/3-1/3 (155/2-(3 Sqrt[849])/2)^(1/3)-1/3 (1/2 (155+3 Sqrt[849]))^(1/3)+ 2 Sqrt[3/(4+(155/2-(3 Sqrt[849])/2)^(1/3)+(1/2 (155+3 Sqrt[849]))^(1/3))]], -(1/(2 Sqrt[3/(4+(155/2-(3 Sqrt[849])/2)^(1/3)+(1/2 (155+3 Sqrt[849]))^(1/3))]))+ 1/2 Sqrt[8/3-1/3 (155/2-(3 Sqrt[849])/2)^(1/3)-1/3 (1/2 (155+3 Sqrt[849]))^(1/3)+ 2 Sqrt[3/(4+(155/2-(3 Sqrt[849])/2)^(1/3)+(1/2 (155+3 Sqrt[849]))^(1/3))]],Infinity}, Method->"PrincipalValue",AccuracyGoal->3,PrecisionGoal->3,WorkingPrecision->50]
which results in the error message
NIntegrate::ncvb: NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in s near {s} = {3.7749613270651398879039428756113970426387939277790*10^28}. NIntegrate obtained 8.8211977939280824575415993952100374290963331174834*10^47 I and 9.1940327832901306869987159913883594088789773626283`50.*^47 for the integral and error estimates.
and
(*-2.6098684408162971553635553440779848277629513026488*10^49 + 8.8211977939280824575415993952100374290963331174789*10^47 I*)
Constructive suggestions are welcome.
–