I did program where I solved a system when I organized in matrix form, this is the code

`Clear["Global`*"] SeedRandom[1234] Nmax = 5; (*Number of sites*) tini = 0; (*initial time*) tmax = 200; (*maximal time*) \[Sigma]2 = 0; (*Variance*) n0 = 5; (*initial condition*) ra = 1; (*coupling range*) \[Psi]ini = Table[KroneckerDelta[n0 - i], {i, 1, Nmax}]; RR = RandomReal[{-Sqrt[3*\[Sigma]2], Sqrt[3*\[Sigma]2]}, Nmax]; Z = Table[ Sum[KroneckerDelta[i - j + k], {k, 1, ra}] + Sum[KroneckerDelta[i - j - k], {k, 1, ra}], {i, 1, Nmax}, {j, 1, Nmax}] + DiagonalMatrix[RR]; Clear[\[Psi]] usol = NDSolveValue[{I D[\[Psi][t], t] == Z.\[Psi][t], \[Psi][0] == \[Psi]ini}, \[Psi], {t, tini, tmax}] Plot[usol[t], {t, tini, tmax}] `

Now, I´m trying to solve the same system but writing the equations

`Clear["Global`*"] tini = 0; tmax = 200; usol = NDSolveValue[{I x1'[t] == x2[t], I x2'[t] == x1[t] + x3[t], I x3'[t] == x2[t] + x4[t], I x4'[t] == x3[t] + x5[t], I x5'[t] == x4[t], x1[0] == 0, x2[0] == 0, x3[0] == 0, x4[0] == 0, x5[0] == 1}, {x1, x2, x3, x4, x5}, {t, tini, tmax}]; Plot[usol[t], {t, tini, tmax}] `

Why the second code doesn´t give me the same result if I write the same system?