Why $\widetilde{W}$ is closed?

let’s consider $ \mathscr{U}$ a free ultrafilter on the natural numbers and consider its corresponding ultrapower \begin{align*} \widetilde{X} = (\ell ^{\infty}(X _{i})/\operatorname{ker}\mathcal{N},\Vert \cdot \Vert), \end{align*} where $ \widetilde{x}$ is the equivalence class formed by the sequence $ (x _{n})$ and the norm $ \Vert \cdot \Vert$ is defined as \begin{align*} \Vert \widetilde{w} \Vert = \lim _{n, \mathscr{U}} \Vert w _{n} \Vert. \end{align*} We define \begin{align*} D(\widetilde{w}) = \lim _{m, \mathscr{U}} \left( \lim _{n, \mathscr{U}} \Vert w _{m} – w _{n} \Vert \right). \end{align*} Let $ T: C \to C $ a non-expansive function and $ C$ a set of $ X$ . For the minimal set of \begin{align*} \mathscr{A} = \{ K \subseteq C: \ K \ \mbox{is not empty, weak compact, convex and $ T$ -invariant}\} \end{align*} called $ C _{0}$ . We know that $ C _{0}$ is closed, convex and $ T$ -invariant. We define the set \begin{align*} \widetilde{C _{0}} = \{ \widetilde{w}: w _{n} \in C _{0}, \ \mbox{for all} \ n \in \mathbb{N} \} \in \widetilde{X} \mbox{.} \end{align*} Let \begin{align*} \widetilde{W} = \left\{ \widetilde{w} \in \widetilde{C _{0}}: \ \Vert \widetilde{w} – \widetilde{x} \Vert \leqslant \frac{1}{2} \ \mbox{and} \ D(\widetilde{w}) \leqslant \frac{1}{2} \right\} \mbox{.} \end{align*} Why $ \widetilde{W}$ is closed?.