Goodmorning, I have to analyze the time complexity of this algorithm:

**Pseudocode:**

`minMax(vet, b, e) //b->index of the first element; e->index of the last element { if(e-b <= 1) { return <min(vet[b], vet[e]), max(vet[b], vet[e])>; } else { p = [(b+e)/2]; <min,max> = minMax(vet, b, p); <min2,max2> = minMax(vet, p+1, e); return <min(min, min2), max(max1, max2)>; } } `

**Time complexity:**

$ T(n) = 2^{i-1}T(n/2^{i-1})+2^{i-1}c$

$ n = 2^i$

$ i = log_2(n)$

$ T(n) = \frac{n}{2}T(2)+\frac{n}{2}c = $

$ = n+\frac{n}{2}c = \frac{3n}{2}c \in Θ(n)$

are the steps correct?