# Using ScalingFunctions to ListPlot data in specific range and also to print FrameTicks with appropriate precision, gives strange fluctuations

Through the following code, we generate Tp1:

In[1]:= tempPV = (   3 \[Pi]^(2/3) + 6 6^(2/3) P \[Pi] V^(2/3) -     6^(2/3) V^(     2/3) (-3 + Sqrt[       9 + (4 6^(2/3) \[Pi]^(4/3) q^2)/(        V^(4/3) \[Beta]^2)]) \[Beta]^2 +     3 6^(2/3) V^(     2/3) \[Beta]^2 Log[      1/6 (3 + Sqrt[         9 + (4 6^(2/3) \[Pi]^(4/3) q^2)/(V^(4/3) \[Beta]^2)])])/(   6 6^(1/3) \[Pi]^(4/3) V^(1/3));  In[2]:= \[Beta]in = 0.01; \[Beta]fi = 100; \[Beta]st = 0.005; Table[   xlog[\[Beta]] = Log[10, \[Beta]]   , {\[Beta], \[Beta]in, \[Beta]fi, \[Beta]st}];  In[6]:= parap1 = {q -> 0.1, V4 -> 5000}; parap2 = {T2 -> 15, q -> 0.1, V2 -> 10000}; parap4 = {T4 -> 5, q -> 0.1, V4 -> 5000};  In[9]:= Table[    pressp2[\[Beta]] =     P /. Solve[(tempPV - T2 == 0) /. V -> V2 /. parap2, P][[1]];(*p1=   p2*)   pressp4[\[Beta]] =     P /. Solve[(tempPV - T4 == 0) /. V -> V4 /. parap4, P][[1]];(*p3=   p4*)   Tp1[\[Beta]] =     T1 /. Solve[(tempPV - T1 == 0) /. V -> V4 /. parap1 /.         P -> pressp2[\[Beta]], T1][[1]];   , {\[Beta], \[Beta]in, \[Beta]fi, \[Beta]st}];  In[10]:= mi =   Min[Table[Tp1[\[Beta]], {\[Beta], \[Beta]in, \[Beta]fi, \[Beta]st}]] ma = Max[Table[    Tp1[\[Beta]], {\[Beta], \[Beta]in, \[Beta]fi, \[Beta]st}]]  Out[10]= 11.9083  Out[11]= 11.9083  In[12]:= ListPlot[  Table[{xlog[\[Beta]],     Tp1[\[Beta]]}, {\[Beta], \[Beta]in, \[Beta]fi, \[Beta]st}],   ScalingFunctions -> {Rescale[#, {mi, ma}, {0., 1.}] &,     Rescale[#, {0., 1.}, {mi, ma}] &}, Joined -> True, Frame -> True,   FrameStyle -> Black,   BaseStyle -> {FontSize -> 14, PrintPrecision -> 11},   FrameLabel -> {"\!$$\*SubscriptBox[\(log$$, $$10$$]\) (\[Beta])",     "\!$$\*SubscriptBox[\(T$$, $$1$$]\)"}, RotateLabel -> False,   PlotStyle -> {Blue, Thickness[0.006]},   PlotRange -> {{-2, 2}, {mi, ma}}, Axes -> None, AspectRatio -> 0.8,   ImageSize -> 400, FrameTicks -> {{ticks, None}, {Automatic, None}}]  

The result is the following plot:

As it is clear there is a strange fluctuation for $$log_{10}^{\beta}=1-2$$. As it should be a smooth decreasing plot, what is the origin of these fluctuations? How to fix this possibly numerical error?